👍 贡献基准评测#

EvalScope作为ModelScope的官方评测工具,其基准评测功能正在持续优化中!我们诚邀您参考本教程,轻松添加自己的评测基准,并与广大社区成员分享您的贡献。一起助力EvalScope的成长,让我们的工具更加出色!

下面以MMLU-Pro为例,介绍如何添加基准评测,主要包含上传数据集、注册数据集、编写评测任务三个步骤。

上传基准评测数据集#

上传基准评测数据集到ModelScope,这可以让用户一键加载数据集,让更多用户受益。当然,如果数据集已经存在,可以跳过这一步。

参见

例如:modelscope/MMLU-Pro,参考数据集上传教程

请确保数据可以被modelscope加载,测试代码如下:

from modelscope import MsDataset

dataset = MsDataset.load("modelscope/MMLU-Pro")  # 替换为你的数据集

注册基准评测#

在EvalScope中添加基准评测。

创建文件结构#

首先Fork EvalScope 仓库,即创建一个自己的EvalScope仓库副本,将其clone到本地。

然后,在evalscope/benchmarks/目录下添加基准评测,结构如下:

evalscope/benchmarks/
├── benchmark_name
│   ├── __init__.py
│   ├── benchmark_name_adapter.py
│   └── ...

具体到MMLU-Pro,结构如下:

evalscope/benchmarks/
├── mmlu_pro
│   ├── __init__.py
│   ├── mmlu_pro_adapter.py
│   └── ...

注册Benchmark#

我们需要在benchmark_name_adapter.py中注册Benchmark,使得EvalScope能够加载我们添加的基准测试。以MMLU-Pro为例,主要包含以下内容:

  • 导入BenchmarkDataAdapter

  • 注册Benchmark,指定:

    • name:基准测试名称

    • dataset_id:基准测试数据集ID,用于加载基准测试数据集

    • model_adapter:基准测试模型默认适配器。支持两种:

      • OutputType.GENERATION:通用文本生成模型评测,通过输入prompt,返回模型生成的文本

      • OutputType.MULTIPLE_CHOICE:多选题评测,通过logits来计算选项的概率,返回最大概率选项

    • output_types:基准测试输出类型,支持多选:

      • OutputType.GENERATION:通用文本生成模型评测

      • OutputType.MULTIPLE_CHOICE:多选题评测输出logits

    • subset_list:基准测试数据集的子数据集

    • metric_list:基准测试评估指标

    • few_shot_num:评测的In Context Learning样本数量

    • train_split:基准测试训练集,用于采样ICL样例

    • eval_split:基准测试评估集

    • prompt_template:基准测试提示模板

  • 创建MMLUProAdapter类,继承自DataAdapter

小技巧

默认subset_list, train_split, eval_split 可以从数据集预览中获取,例如MMLU-Pro预览

MMLU-Pro预览

代码示例如下:

from evalscope.benchmarks import Benchmark, DataAdapter
from evalscope.constants import EvalType, OutputType

SUBSET_LIST = [
    'computer science', 'math', 'chemistry', 'engineering', 'law', 'biology', 'health', 'physics', 'business',
    'philosophy', 'economics', 'other', 'psychology', 'history'
]  # 自定义的子数据集列表

@Benchmark.register(
    name='mmlu_pro',
    pretty_name='MMLU-Pro',
    dataset_id='modelscope/MMLU-Pro',
    model_adapter=OutputType.GENERATION,
    output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
    subset_list=SUBSET_LIST,
    metric_list=['AverageAccuracy'],
    few_shot_num=5,
    train_split='validation',
    eval_split='test',
    prompt_template=
    'The following are multiple choice questions (with answers) about {subset_name}. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n{query}',  # noqa: E501
)
class MMLUProAdapter(DataAdapter):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

编写评测逻辑#

完成DataAdapter的编写,即可在EvalScope中添加评测任务。需要实现如下方法:

  • gen_prompt:生成模型输入prompt。

  • get_gold_answer:解析数据集的标准答案。

  • parse_pred_result:解析模型输出,可以根据不同的eval_type返回不同的答案解析方式。

  • match:匹配模型输出和数据集标准答案,给出打分。

备注

若默认load逻辑不符合需求,可以重写load方法,例如:可以实现根据指定的字段对数据集划分子数据集。

完整示例代码如下:

class MMLUProAdapter(DataAdapter):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        
        self.choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
    
    def load(self, **kwargs):
        # default load all data
        kwargs['subset_list'] = ['default']
        data_dict = super().load(**kwargs)
        # use `category` as subset key
        return self.reformat_subset(data_dict, subset_key='category')
    
    def gen_prompt(self, input_d: Dict, subset_name: str, few_shot_list: list, **kwargs) -> Any:
        if self.few_shot_num > 0:
            prefix = self.format_fewshot_examples(few_shot_list)
        else:
            prefix = ''
        query = prefix + 'Q: ' + input_d['question'] + '\n' + \
            self.__form_options(input_d['options']) + '\n'

        full_prompt = self.prompt_template.format(subset_name=subset_name, query=query)
        return self.gen_prompt_data(full_prompt)
    
    def format_fewshot_examples(self, few_shot_list):
        # load few-shot prompts for each category
        prompts = ''
        for index, d in enumerate(few_shot_list):
            prompts += 'Q: ' + d['question'] + '\n' + \
                self.__form_options(d['options']) + '\n' + \
                d['cot_content'] + '\n\n'
        return prompts
    
    
    def __form_options(self, options: list):
        option_str = 'Options are:\n'
        for opt, choice in zip(options, self.choices):
            option_str += f'({choice}): {opt}' + '\n'
        return option_str
    
    def get_gold_answer(self, input_d: dict) -> str:
        """
        Parse the raw input labels (gold).

        Args:
            input_d: input raw data. Depending on the dataset.

        Returns:
            The parsed input. e.g. gold answer ... Depending on the dataset.
        """
        return input_d['answer']


    def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT) -> str:
        """
        Parse the predicted result and extract proper answer.

        Args:
            result: Predicted answer from the model. Usually a string for chat.
            raw_input_d: The raw input. Depending on the dataset.
            eval_type: 'checkpoint' or 'service' or `custom`, default: 'checkpoint'

        Returns:
            The parsed answer. Depending on the dataset. Usually a string for chat.
        """
        if self.model_adapter == OutputType.MULTIPLE_CHOICE:
            return result
        else:
            return ResponseParser.parse_first_option(result)


    def match(self, gold: str, pred: str) -> float:
        """
        Match the gold answer and the predicted answer.

        Args:
            gold (Any): The golden answer. Usually a string for chat/multiple-choice-questions.
                        e.g. 'A', extracted from get_gold_answer method.
            pred (Any): The predicted answer. Usually a string for chat/multiple-choice-questions.
                        e.g. 'B', extracted from parse_pred_result method.

        Returns:
            The match result. Usually a score (float) for chat/multiple-choice-questions.
        """
        return exact_match(gold=gold, pred=pred)

运行评测#

调试代码,看看是否能正常运行。

from evalscope import run_task, TaskConfig
task_cfg = TaskConfig(
    model='Qwen/Qwen2.5-0.5B-Instruct',
    datasets=['mmlu_pro'],
    limit=10,
    dataset_args={'mmlu_pro': {'subset_list': ['computer science', 'math']}},
    debug=True
)
run_task(task_cfg=task_cfg)

输出如下:

+-----------------------+-----------+-----------------+------------------+-------+---------+---------+
| Model                 | Dataset   | Metric          | Subset           |   Num |   Score | Cat.0   |
+=======================+===========+=================+==================+=======+=========+=========+
| Qwen2.5-0.5B-Instruct | mmlu_pro  | AverageAccuracy | computer science |     10 |       0.1 | default |
+-----------------------+-----------+-----------------+------------------+-------+---------+---------+
| Qwen2.5-0.5B-Instruct | mmlu_pro  | AverageAccuracy | math             |     10 |       0.1 | default |
+-----------------------+-----------+-----------------+------------------+-------+---------+---------+ 

运行没问题的话,就可以提交PR了,我们将尽快合并你的贡献,让更多用户来使用你贡献的基准评测。如果你不知道如何提交PR,可以查看我们的指南,快来试一试吧🚀