MTEB#
MTEB(Massive Text Embedding Benchmark)是一个大规模的基准测试,旨在衡量文本嵌入模型在多样化嵌入任务上的性能。MTEB 包括56个数据集,涵盖8个任务,并且支持超过112种不同的语言。这个基准测试的目标是帮助开发者找到适用于多种任务的最佳文本嵌入模型。
CMTEB(Chinese Massive Text Embedding Benchmark)是一个专门针对中文文本向量的评测基准,它基于MTEB构建,旨在评测中文文本向量模型的性能。CMTEB收集了35个公共数据集,并分为6类评测任务,包括检索(retrieval)、重排序(reranking)、语义文本相似度(STS)、分类(classification)、对分类(pair classification)和聚类(clustering)。
支持的数据集#
名称 |
Hub链接 |
描述 |
类型 |
类别 |
测试样本数量 |
---|---|---|---|---|---|
T2Ranking:一个大规模的中文段落排序基准 |
检索 |
s2p |
24,832 |
||
mMARCO是MS MARCO段落排序数据集的多语言版本 |
检索 |
s2p |
7,437 |
||
一个大规模的中文网页搜索引擎段落检索基准 |
检索 |
s2p |
4,000 |
||
COVID-19新闻文章 |
检索 |
s2p |
949 |
||
在线医疗咨询文本 |
检索 |
s2p |
3,999 |
||
从阿里巴巴电商领域搜索引擎系统收集的段落检索数据集 |
检索 |
s2p |
1,000 |
||
从阿里巴巴医疗领域搜索引擎系统收集的段落检索数据集 |
检索 |
s2p |
1,000 |
||
从阿里巴巴视频领域搜索引擎系统收集的段落检索数据集 |
检索 |
s2p |
1,000 |
||
T2Ranking:一个大规模的中文段落排序基准 |
重新排序 |
s2p |
24,382 |
||
mMARCO是MS MARCO段落排序数据集的多语言版本 |
重新排序 |
s2p |
7,437 |
||
中文社区医疗问答 |
重新排序 |
s2p |
2,000 |
||
中文社区医疗问答 |
重新排序 |
s2p |
4,000 |
||
原始中文自然语言推理数据集 |
配对分类 |
s2s |
3,000 |
||
中文多类别自然语言推理 |
配对分类 |
s2s |
139,000 |
||
从CLS数据集中聚类标题。基于主要类别的13个集合的聚类。 |
聚类 |
s2s |
10,000 |
||
从CLS数据集中聚类标题+摘要。基于主要类别的13个集合的聚类。 |
聚类 |
p2p |
10,000 |
||
从THUCNews数据集中聚类标题 |
聚类 |
s2s |
10,000 |
||
从THUCNews数据集中聚类标题+摘要 |
聚类 |
p2p |
10,000 |
||
ATEC NLP句子对相似性竞赛 |
STS |
s2s |
20,000 |
||
银行问题语义相似性 |
STS |
s2s |
10,000 |
||
大规模中文问题匹配语料库 |
STS |
s2s |
12,500 |
||
翻译的PAWS评测对 |
STS |
s2s |
2,000 |
||
将STS-B翻译成中文 |
STS |
s2s |
1,360 |
||
蚂蚁金服问答匹配语料库 |
STS |
s2s |
3,861 |
||
QQ浏览器查询标题语料库 |
STS |
s2s |
5,000 |
||
新闻短文本分类 |
分类 |
s2s |
10,000 |
||
应用描述的长文本分类 |
分类 |
s2s |
2,600 |
||
外卖平台用户评论的情感分析 |
分类 |
s2s |
1,000 |
||
在线购物网站用户评论的情感分析 |
分类 |
s2s |
1,000 |
||
一组按三类分组的多语言情感数据集--正面、中立、负面 |
分类 |
s2s |
3,000 |
||
iPhone的评论 |
分类 |
s2s |
533 |
对于检索任务,从整个语料库中抽样100,000个候选项(包括真实值),以降低推理成本。
环境准备#
安装依赖包
pip install evalscope[rag] -U
配置评测参数#
框架支持两种评测方式:单阶段评测 和 两阶段评测:
单阶段评测:直接使用模型预测,并计算指标,支持embedding模型的检索、重排序、分类等任务。
两阶段评测:使用模型检索,再使用模型进行重排序,并计算指标,支持reranking模型。
单阶段评测#
配置文件示例如下:
one_stage_task_cfg = {
"eval_backend": "RAGEval",
"eval_config": {
"tool": "MTEB",
"model": [
{
"model_name_or_path": "AI-ModelScope/m3e-base",
"pooling_mode": None,
"max_seq_length": 512,
"prompt": "",
"model_kwargs": {"torch_dtype": "auto"},
"encode_kwargs": {
"batch_size": 128,
},
}
],
"eval": {
"tasks": [
"TNews",
"CLSClusteringS2S",
"T2Reranking",
"T2Retrieval",
"ATEC",
],
"verbosity": 2,
"output_folder": "outputs",
"overwrite_results": True,
"top_k": 10,
"limits": 500,
},
},
}
两阶段评测#
评测reranker需要用retrieval数据集,先用embedding模型检索topk,再进行排序。配置文件示例如下:
two_stage_task_cfg = {
"eval_backend": "RAGEval",
"eval_config": {
"tool": "MTEB",
"model": [
{
"model_name_or_path": "AI-ModelScope/m3e-base",
"is_cross_encoder": False,
"max_seq_length": 512,
"model_kwargs": {"torch_dtype": "auto"},
"encode_kwargs": {
"batch_size": 64,
},
},
{
"model_name_or_path": "OpenBMB/MiniCPM-Reranker",
"is_cross_encoder": True,
"max_seq_length": 512,
"prompt": "为这个问题生成一个检索用的表示",
"model_kwargs": {"torch_dtype": "auto"},
"encode_kwargs": {
"batch_size": 32,
},
},
],
"eval": {
"tasks": ["T2Retrieval"],
"verbosity": 2,
"output_folder": "outputs",
"overwrite_results": True,
"top_k": 5,
"limits": 100,
},
},
}
参数说明#
eval_backend
:默认值为RAGEval
,表示使用 RAGEval 评测后端。eval_config
:字典,包含以下字段:tool
:评测工具,使用MTEB
。model
: 模型配置列表,单阶段评测时只能放置一个模型;两阶段评测传入两个模型,第一个模型用于检索,第二个模型用于reranking,包含以下字段:model_name_or_path
:str
模型名称或路径,支持从modelscope仓库自动下载模型。is_cross_encoder
:bool
模型是否为交叉编码器,默认为 False;reranking模型需设置为True
。pooling_mode
:Optional[str]
池化模式,默认为mean
,可选值为:“cls”、“lasttoken”、“max”、“mean”、“mean_sqrt_len_tokens”或“weightedmean”。bge
系列模型请设置为“cls”。max_seq_length
:int
最大序列长度,默认为 512。prompt
:str
用于检索任务在模型前的提示,默认为空字符串。model_kwargs
:dict
模型的关键字参数,默认值为{"torch_dtype": "auto"}
。config_kwargs
:Dict[str, Any]
配置的关键字参数,默认为空字典。encode_kwargs
:dict
编码的关键字参数,默认值为:{ "show_progress_bar": True, "batch_size": 32 }
hub
:str
模型来源,可以是 "modelscope" 或 "huggingface"。
eval
:字典,包含以下字段:tasks
:List[str]
任务名称,参见任务列表top_k
:int
选取前 K 个结果,检索任务使用verbosity
:int
详细程度,范围为 0-3output_folder
:str
输出文件夹,默认为 "outputs"overwrite_results
:bool
是否覆盖结果,默认为 Truelimits
:Optional[int]
限制样本数量,默认为 None;检索任务不建议设置hub
:str
数据集来源,可以是 "modelscope" 或 "huggingface"
模型评测#
from evalscope.run import run_task
# Run task
run_task(task_cfg=one_stage_task_cfg)
# or
# run_task(task_cfg=two_stage_task_cfg)
输出结果如下:
单阶段评测
输出:
{
"dataset_revision": "317f262bf1e6126357bbe89e875451e4b0938fe4",
"evaluation_time": 16.50650382041931,
"kg_co2_emissions": null,
"mteb_version": "1.14.15",
"scores": {
"validation": [
{
"accuracy": 0.4744,
"f1": 0.44562489526640825,
"f1_weighted": 0.47540307398330806,
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"main_score": 0.4744,
"scores_per_experiment": [
{
"accuracy": 0.48,
"f1": 0.4536376605217497,
"f1_weighted": 0.47800277926811163
},
{
"accuracy": 0.48,
"f1": 0.44713633954639176,
"f1_weighted": 0.4826984434763292
},
{
"accuracy": 0.462,
"f1": 0.433365706955334,
"f1_weighted": 0.4640970055245127
},
{
"accuracy": 0.484,
"f1": 0.4586732839614161,
"f1_weighted": 0.4857359110392786
},
{
"accuracy": 0.462,
"f1": 0.4293797541165097,
"f1_weighted": 0.4632657330831137
},
{
"accuracy": 0.474,
"f1": 0.44775120246296396,
"f1_weighted": 0.4737182842092953
},
{
"accuracy": 0.47,
"f1": 0.4431197566080463,
"f1_weighted": 0.4714830140231783
},
{
"accuracy": 0.472,
"f1": 0.44322381694059326,
"f1_weighted": 0.47100005556357255
},
{
"accuracy": 0.484,
"f1": 0.45454749692062835,
"f1_weighted": 0.4856239367465818
},
{
"accuracy": 0.476,
"f1": 0.44541393463044954,
"f1_weighted": 0.47840557689910646
}
]
}
]
},
"task_name": "TNews"
}
两阶段评测
阶段一
{
"dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
"evaluation_time": 599.5170171260834,
"kg_co2_emissions": null,
"mteb_version": "1.14.15",
"scores": {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"main_score": 0.73143,
"map_at_1": 0.22347,
"map_at_10": 0.63237,
"map_at_100": 0.67533,
"map_at_1000": 0.67651,
"map_at_20": 0.66282,
"map_at_3": 0.43874,
"map_at_5": 0.54049,
"mrr_at_1": 0.7898912852884447,
"mrr_at_10": 0.8402654617870331,
"mrr_at_100": 0.8421827758769684,
"mrr_at_1000": 0.8422583001072272,
"mrr_at_20": 0.8415411456315557,
"mrr_at_3": 0.8307469752761716,
"mrr_at_5": 0.8368029984218875,
"nauc_map_at_1000_diff1": 0.17749400860890877,
"nauc_map_at_1000_max": 0.42844516520725967,
"nauc_map_at_1000_std": 0.18789871694419072,
"nauc_map_at_100_diff1": 0.17747467084779375,
"nauc_map_at_100_max": 0.42732291785494575,
"nauc_map_at_100_std": 0.18694287087286737,
"nauc_map_at_10_diff1": 0.19976199493034202,
"nauc_map_at_10_max": 0.3374436217668296,
"nauc_map_at_10_std": 0.07951451707732717,
"nauc_map_at_1_diff1": 0.41727578149080663,
"nauc_map_at_1_max": -0.1402656422184478,
"nauc_map_at_1_std": -0.26168722519030313,
"nauc_map_at_20_diff1": 0.1811898211371171,
"nauc_map_at_20_max": 0.40563441466210043,
"nauc_map_at_20_std": 0.15927727170010608,
"nauc_map_at_3_diff1": 0.31255422845809033,
"nauc_map_at_3_max": 0.007523677231905161,
"nauc_map_at_3_std": -0.19578481884353466,
"nauc_map_at_5_diff1": 0.26073699217160473,
"nauc_map_at_5_max": 0.14665611579604088,
"nauc_map_at_5_std": -0.09600383298672226,
"nauc_mrr_at_1000_diff1": 0.3819666309367981,
"nauc_mrr_at_1000_max": 0.6285393024619401,
"nauc_mrr_at_1000_std": 0.3294970299417527,
"nauc_mrr_at_100_diff1": 0.3819436006743644,
"nauc_mrr_at_100_max": 0.6286346262471935,
"nauc_mrr_at_100_std": 0.32963045935037844,
"nauc_mrr_at_10_diff1": 0.3819124721154632,
"nauc_mrr_at_10_max": 0.6292778905762176,
"nauc_mrr_at_10_std": 0.3298187966196067,
"nauc_mrr_at_1_diff1": 0.3862589251033909,
"nauc_mrr_at_1_max": 0.589976680174432,
"nauc_mrr_at_1_std": 0.2780515387897469,
"nauc_mrr_at_20_diff1": 0.38198959771391816,
"nauc_mrr_at_20_max": 0.6290569436652999,
"nauc_mrr_at_20_std": 0.3301570340189363,
"nauc_mrr_at_3_diff1": 0.3825046940733129,
"nauc_mrr_at_3_max": 0.6282507269128365,
"nauc_mrr_at_3_std": 0.3260807934869131,
"nauc_mrr_at_5_diff1": 0.3816317396711923,
"nauc_mrr_at_5_max": 0.6288655177904692,
"nauc_mrr_at_5_std": 0.3298854062538469,
"nauc_ndcg_at_1000_diff1": 0.21319598381916555,
"nauc_ndcg_at_1000_max": 0.5328295949130256,
"nauc_ndcg_at_1000_std": 0.2946773445135694,
"nauc_ndcg_at_100_diff1": 0.2089807772703975,
"nauc_ndcg_at_100_max": 0.5239397690321543,
"nauc_ndcg_at_100_std": 0.29123456982125717,
"nauc_ndcg_at_10_diff1": 0.20555333230027603,
"nauc_ndcg_at_10_max": 0.44316027023003046,
"nauc_ndcg_at_10_std": 0.1921835220940756,
"nauc_ndcg_at_1_diff1": 0.3862589251033909,
"nauc_ndcg_at_1_max": 0.589976680174432,
"nauc_ndcg_at_1_std": 0.2780515387897469,
"nauc_ndcg_at_20_diff1": 0.20754208582741446,
"nauc_ndcg_at_20_max": 0.4786092392092643,
"nauc_ndcg_at_20_std": 0.23536973680564616,
"nauc_ndcg_at_3_diff1": 0.1902823773882388,
"nauc_ndcg_at_3_max": 0.5400466380622567,
"nauc_ndcg_at_3_std": 0.2713874990424778,
"nauc_ndcg_at_5_diff1": 0.18279298790691637,
"nauc_ndcg_at_5_max": 0.4916119327522918,
"nauc_ndcg_at_5_std": 0.2375397192963552,
"nauc_precision_at_1000_diff1": -0.20510380600112582,
"nauc_precision_at_1000_max": 0.4958820760698651,
"nauc_precision_at_1000_std": 0.5402465580496146,
"nauc_precision_at_100_diff1": -0.1994322347949809,
"nauc_precision_at_100_max": 0.5206762748551254,
"nauc_precision_at_100_std": 0.5568154081333078,
"nauc_precision_at_10_diff1": -0.16707155441197413,
"nauc_precision_at_10_max": 0.5600612846655972,
"nauc_precision_at_10_std": 0.49419688804691536,
"nauc_precision_at_1_diff1": 0.3862589251033909,
"nauc_precision_at_1_max": 0.589976680174432,
"nauc_precision_at_1_std": 0.2780515387897469,
"nauc_precision_at_20_diff1": -0.18471041949530417,
"nauc_precision_at_20_max": 0.5458950955439645,
"nauc_precision_at_20_std": 0.5355982267058214,
"nauc_precision_at_3_diff1": -0.03826790088047189,
"nauc_precision_at_3_max": 0.5833083970750171,
"nauc_precision_at_3_std": 0.380196662597275,
"nauc_precision_at_5_diff1": -0.11789367842600275,
"nauc_precision_at_5_max": 0.5708494593335263,
"nauc_precision_at_5_std": 0.42860609671688105,
"nauc_recall_at_1000_diff1": 0.1341309660059583,
"nauc_recall_at_1000_max": 0.5923755841077135,
"nauc_recall_at_1000_std": 0.5980459502693942,
"nauc_recall_at_100_diff1": 0.12181394285840096,
"nauc_recall_at_100_max": 0.47090136790318127,
"nauc_recall_at_100_std": 0.3959369184297595,
"nauc_recall_at_10_diff1": 0.17356300971546512,
"nauc_recall_at_10_max": 0.25475707245853674,
"nauc_recall_at_10_std": 0.041819982320384745,
"nauc_recall_at_1_diff1": 0.41727578149080663,
"nauc_recall_at_1_max": -0.1402656422184478,
"nauc_recall_at_1_std": -0.26168722519030313,
"nauc_recall_at_20_diff1": 0.14273713155999543,
"nauc_recall_at_20_max": 0.36251116771924663,
"nauc_recall_at_20_std": 0.1912123941692314,
"nauc_recall_at_3_diff1": 0.2873719855400218,
"nauc_recall_at_3_max": -0.041198403561830285,
"nauc_recall_at_3_std": -0.21921947922872737,
"nauc_recall_at_5_diff1": 0.23680082643694844,
"nauc_recall_at_5_max": 0.06580524171324151,
"nauc_recall_at_5_std": -0.14104561361502632,
"ndcg_at_1": 0.78989,
"ndcg_at_10": 0.73143,
"ndcg_at_100": 0.78829,
"ndcg_at_1000": 0.80026,
"ndcg_at_20": 0.75787,
"ndcg_at_3": 0.7417,
"ndcg_at_5": 0.72641,
"precision_at_1": 0.78989,
"precision_at_10": 0.37304,
"precision_at_100": 0.04828,
"precision_at_1000": 0.00511,
"precision_at_20": 0.21403,
"precision_at_3": 0.65461,
"precision_at_5": 0.54942,
"recall_at_1": 0.22347,
"recall_at_10": 0.73318,
"recall_at_100": 0.91093,
"recall_at_1000": 0.97197,
"recall_at_20": 0.81286,
"recall_at_3": 0.46573,
"recall_at_5": 0.59383
}
]
},
"task_name": "T2Retrieval"
}
阶段二
{
"dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
"evaluation_time": 332.15709686279297,
"kg_co2_emissions": null,
"mteb_version": "1.14.15",
"scores": {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"main_score": 0.661,
"map_at_1": 0.24264,
"map_at_10": 0.56291,
"map_at_100": 0.56291,
"map_at_1000": 0.56291,
"map_at_20": 0.56291,
"map_at_3": 0.4714,
"map_at_5": 0.56291,
"mrr_at_1": 0.841969139049623,
"mrr_at_10": 0.8689147524694633,
"mrr_at_100": 0.8689147524694633,
"mrr_at_1000": 0.8689147524694633,
"mrr_at_20": 0.8689147524694633,
"mrr_at_3": 0.8664883979192248,
"mrr_at_5": 0.8689147524694633,
"nauc_map_at_1000_diff1": 0.12071580301051653,
"nauc_map_at_1000_max": 0.2536691069727338,
"nauc_map_at_1000_std": 0.343624832364704,
"nauc_map_at_100_diff1": 0.12071580301051653,
"nauc_map_at_100_max": 0.2536691069727338,
"nauc_map_at_100_std": 0.343624832364704,
"nauc_map_at_10_diff1": 0.12071580301051653,
"nauc_map_at_10_max": 0.2536691069727338,
"nauc_map_at_10_std": 0.343624832364704,
"nauc_map_at_1_diff1": 0.47964980727810325,
"nauc_map_at_1_max": -0.08015044571696166,
"nauc_map_at_1_std": 0.3507257834956417,
"nauc_map_at_20_diff1": 0.12071580301051653,
"nauc_map_at_20_max": 0.2536691069727338,
"nauc_map_at_20_std": 0.343624832364704,
"nauc_map_at_3_diff1": 0.23481937699306626,
"nauc_map_at_3_max": 0.10372745264123306,
"nauc_map_at_3_std": 0.45345158923063256,
"nauc_map_at_5_diff1": 0.12071580301051653,
"nauc_map_at_5_max": 0.2536691069727338,
"nauc_map_at_5_std": 0.343624832364704,
"nauc_mrr_at_1000_diff1": 0.23393918304502795,
"nauc_mrr_at_1000_max": 0.8703379129725659,
"nauc_mrr_at_1000_std": 0.5785333616122065,
"nauc_mrr_at_100_diff1": 0.23393918304502795,
"nauc_mrr_at_100_max": 0.8703379129725659,
"nauc_mrr_at_100_std": 0.5785333616122065,
"nauc_mrr_at_10_diff1": 0.23393918304502795,
"nauc_mrr_at_10_max": 0.8703379129725659,
"nauc_mrr_at_10_std": 0.5785333616122065,
"nauc_mrr_at_1_diff1": 0.2520016067648708,
"nauc_mrr_at_1_max": 0.8560897633767299,
"nauc_mrr_at_1_std": 0.5642467684745208,
"nauc_mrr_at_20_diff1": 0.23393918304502795,
"nauc_mrr_at_20_max": 0.8703379129725659,
"nauc_mrr_at_20_std": 0.5785333616122065,
"nauc_mrr_at_3_diff1": 0.2343988881957151,
"nauc_mrr_at_3_max": 0.8695482778251757,
"nauc_mrr_at_3_std": 0.5799167198804328,
"nauc_mrr_at_5_diff1": 0.23393918304502795,
"nauc_mrr_at_5_max": 0.8703379129725659,
"nauc_mrr_at_5_std": 0.5785333616122065,
"nauc_ndcg_at_1000_diff1": 0.11252208055013257,
"nauc_ndcg_at_1000_max": 0.3417865079349515,
"nauc_ndcg_at_1000_std": 0.3623961771041499,
"nauc_ndcg_at_100_diff1": 0.11252208055013257,
"nauc_ndcg_at_100_max": 0.3417865079349515,
"nauc_ndcg_at_100_std": 0.3623961771041499,
"nauc_ndcg_at_10_diff1": 0.10015448775533999,
"nauc_ndcg_at_10_max": 0.3761759074862075,
"nauc_ndcg_at_10_std": 0.35152523471339914,
"nauc_ndcg_at_1_diff1": 0.2524564785684737,
"nauc_ndcg_at_1_max": 0.8566368743831702,
"nauc_ndcg_at_1_std": 0.5635391925059349,
"nauc_ndcg_at_20_diff1": 0.11228113618796766,
"nauc_ndcg_at_20_max": 0.34274993051851965,
"nauc_ndcg_at_20_std": 0.36216437469674284,
"nauc_ndcg_at_3_diff1": -0.062134030685870506,
"nauc_ndcg_at_3_max": 0.7183183844837573,
"nauc_ndcg_at_3_std": 0.3352626268658533,
"nauc_ndcg_at_5_diff1": -0.04476981761624879,
"nauc_ndcg_at_5_max": 0.6272060974309411,
"nauc_ndcg_at_5_std": 0.21341258393783158,
"nauc_precision_at_1000_diff1": -0.3554940965683014,
"nauc_precision_at_1000_max": 0.605443274008298,
"nauc_precision_at_1000_std": -0.13073611213585504,
"nauc_precision_at_100_diff1": -0.35549409656830133,
"nauc_precision_at_100_max": 0.6054432740082977,
"nauc_precision_at_100_std": -0.13073611213585531,
"nauc_precision_at_10_diff1": -0.3554940965683011,
"nauc_precision_at_10_max": 0.6054432740082981,
"nauc_precision_at_10_std": -0.1307361121358551,
"nauc_precision_at_1_diff1": 0.2524564785684737,
"nauc_precision_at_1_max": 0.8566368743831702,
"nauc_precision_at_1_std": 0.5635391925059349,
"nauc_precision_at_20_diff1": -0.3554940965683011,
"nauc_precision_at_20_max": 0.6054432740082981,
"nauc_precision_at_20_std": -0.1307361121358551,
"nauc_precision_at_3_diff1": -0.3377658698816377,
"nauc_precision_at_3_max": 0.6780151277792397,
"nauc_precision_at_3_std": 0.12291559606586676,
"nauc_precision_at_5_diff1": -0.3554940965683011,
"nauc_precision_at_5_max": 0.6054432740082981,
"nauc_precision_at_5_std": -0.1307361121358551,
"nauc_recall_at_1000_diff1": 0.1091970342988605,
"nauc_recall_at_1000_max": 0.18339955163544436,
"nauc_recall_at_1000_std": 0.30756376767627086,
"nauc_recall_at_100_diff1": 0.1091970342988605,
"nauc_recall_at_100_max": 0.18339955163544436,
"nauc_recall_at_100_std": 0.30756376767627086,
"nauc_recall_at_10_diff1": 0.1091970342988605,
"nauc_recall_at_10_max": 0.18339955163544436,
"nauc_recall_at_10_std": 0.30756376767627086,
"nauc_recall_at_1_diff1": 0.47964980727810325,
"nauc_recall_at_1_max": -0.08015044571696166,
"nauc_recall_at_1_std": 0.3507257834956417,
"nauc_recall_at_20_diff1": 0.1091970342988605,
"nauc_recall_at_20_max": 0.18339955163544436,
"nauc_recall_at_20_std": 0.30756376767627086,
"nauc_recall_at_3_diff1": 0.22013063499116758,
"nauc_recall_at_3_max": 0.054749114965246065,
"nauc_recall_at_3_std": 0.4258163949018153,
"nauc_recall_at_5_diff1": 0.1091970342988605,
"nauc_recall_at_5_max": 0.18339955163544436,
"nauc_recall_at_5_std": 0.30756376767627086,
"ndcg_at_1": 0.84188,
"ndcg_at_10": 0.661,
"ndcg_at_100": 0.6534,
"ndcg_at_1000": 0.6534,
"ndcg_at_20": 0.65358,
"ndcg_at_3": 0.7826,
"ndcg_at_5": 0.74517,
"precision_at_1": 0.84188,
"precision_at_10": 0.27471,
"precision_at_100": 0.02747,
"precision_at_1000": 0.00275,
"precision_at_20": 0.13736,
"precision_at_3": 0.68633,
"precision_at_5": 0.54942,
"recall_at_1": 0.24264,
"recall_at_10": 0.59383,
"recall_at_100": 0.59383,
"recall_at_1000": 0.59383,
"recall_at_20": 0.59383,
"recall_at_3": 0.48934,
"recall_at_5": 0.59383
}
]
},
"task_name": "T2Retrieval"
}
自定义评测数据集#
参见