MTEB#

本框架支持 MTEBCMTEB,具体介绍如下:

  • MTEB(Massive Text Embedding Benchmark)是一个大规模的基准测试,旨在衡量文本嵌入模型在多样化嵌入任务上的性能。MTEB 包括56个数据集,涵盖8个任务,并且支持超过112种不同的语言。这个基准测试的目标是帮助开发者找到适用于多种任务的最佳文本嵌入模型。

  • CMTEB(Chinese Massive Text Embedding Benchmark)是一个专门针对中文文本向量的评测基准,它基于MTEB构建,旨在评测中文文本向量模型的性能。CMTEB收集了35个公共数据集,并分为6类评测任务,包括检索(retrieval)、重排序(reranking)、语义文本相似度(STS)、分类(classification)、对分类(pair classification)和聚类(clustering)。

支持的数据集#

名称

Hub链接

描述

类型

类别

测试样本数量

T2Retrieval

C-MTEB/T2Retrieval

T2Ranking:一个大规模的中文段落排序基准

检索

s2p

24,832

MMarcoRetrieval

C-MTEB/MMarcoRetrieval

mMARCO是MS MARCO段落排序数据集的多语言版本

检索

s2p

7,437

DuRetrieval

C-MTEB/DuRetrieval

一个大规模的中文网页搜索引擎段落检索基准

检索

s2p

4,000

CovidRetrieval

C-MTEB/CovidRetrieval

COVID-19新闻文章

检索

s2p

949

CmedqaRetrieval

C-MTEB/CmedqaRetrieval

在线医疗咨询文本

检索

s2p

3,999

EcomRetrieval

C-MTEB/EcomRetrieval

从阿里巴巴电商领域搜索引擎系统收集的段落检索数据集

检索

s2p

1,000

MedicalRetrieval

C-MTEB/MedicalRetrieval

从阿里巴巴医疗领域搜索引擎系统收集的段落检索数据集

检索

s2p

1,000

VideoRetrieval

C-MTEB/VideoRetrieval

从阿里巴巴视频领域搜索引擎系统收集的段落检索数据集

检索

s2p

1,000

T2Reranking

C-MTEB/T2Reranking

T2Ranking:一个大规模的中文段落排序基准

重新排序

s2p

24,382

MMarcoReranking

C-MTEB/MMarco-reranking

mMARCO是MS MARCO段落排序数据集的多语言版本

重新排序

s2p

7,437

CMedQAv1

C-MTEB/CMedQAv1-reranking

中文社区医疗问答

重新排序

s2p

2,000

CMedQAv2

C-MTEB/CMedQAv2-reranking

中文社区医疗问答

重新排序

s2p

4,000

Ocnli

C-MTEB/OCNLI

原始中文自然语言推理数据集

配对分类

s2s

3,000

Cmnli

C-MTEB/CMNLI

中文多类别自然语言推理

配对分类

s2s

139,000

CLSClusteringS2S

C-MTEB/CLSClusteringS2S

从CLS数据集中聚类标题。基于主要类别的13个集合的聚类。

聚类

s2s

10,000

CLSClusteringP2P

C-MTEB/CLSClusteringP2P

从CLS数据集中聚类标题+摘要。基于主要类别的13个集合的聚类。

聚类

p2p

10,000

ThuNewsClusteringS2S

C-MTEB/ThuNewsClusteringS2S

从THUCNews数据集中聚类标题

聚类

s2s

10,000

ThuNewsClusteringP2P

C-MTEB/ThuNewsClusteringP2P

从THUCNews数据集中聚类标题+摘要

聚类

p2p

10,000

ATEC

C-MTEB/ATEC

ATEC NLP句子对相似性竞赛

STS

s2s

20,000

BQ

C-MTEB/BQ

银行问题语义相似性

STS

s2s

10,000

LCQMC

C-MTEB/LCQMC

大规模中文问题匹配语料库

STS

s2s

12,500

PAWSX

C-MTEB/PAWSX

翻译的PAWS评测对

STS

s2s

2,000

STSB

C-MTEB/STSB

将STS-B翻译成中文

STS

s2s

1,360

AFQMC

C-MTEB/AFQMC

蚂蚁金服问答匹配语料库

STS

s2s

3,861

QBQTC

C-MTEB/QBQTC

QQ浏览器查询标题语料库

STS

s2s

5,000

TNews

C-MTEB/TNews-classification

新闻短文本分类

分类

s2s

10,000

IFlyTek

C-MTEB/IFlyTek-classification

应用描述的长文本分类

分类

s2s

2,600

Waimai

C-MTEB/waimai-classification

外卖平台用户评论的情感分析

分类

s2s

1,000

OnlineShopping

C-MTEB/OnlineShopping-classification

在线购物网站用户评论的情感分析

分类

s2s

1,000

MultilingualSentiment

C-MTEB/MultilingualSentiment-classification

一组按三类分组的多语言情感数据集--正面、中立、负面

分类

s2s

3,000

JDReview

C-MTEB/JDReview-classification

iPhone的评论

分类

s2s

533

对于检索任务,从整个语料库中抽样100,000个候选项(包括真实值),以降低推理成本。

环境准备#

安装依赖包

pip install evalscope[rag] -U

配置评测参数#

框架支持两种评测方式:单阶段评测 和 两阶段评测:

  • 单阶段评测:直接使用模型预测,并计算指标,支持embedding模型的检索、重排序、分类等任务。

  • 两阶段评测:使用模型检索,再使用模型进行重排序,并计算指标,支持reranking模型。

单阶段评测#

配置文件示例如下:

one_stage_task_cfg = {
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "pooling_mode": None,
                "max_seq_length": 512,
                "prompt": "",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 128,
                },
            }
        ],
        "eval": {
            "tasks": [
                "TNews",
                "CLSClusteringS2S",
                "T2Reranking",
                "T2Retrieval",
                "ATEC",
            ],
            "verbosity": 2,
            "output_folder": "outputs",
            "overwrite_results": True,
            "top_k": 10,
            "limits": 500,
        },
    },
}

两阶段评测#

评测reranker需要用retrieval数据集,先用embedding模型检索topk,再进行排序。配置文件示例如下:

two_stage_task_cfg = {
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "is_cross_encoder": False,
                "max_seq_length": 512,
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 64,
                },
            },
            {
                "model_name_or_path": "OpenBMB/MiniCPM-Reranker",
                "is_cross_encoder": True,
                "max_seq_length": 512,
                "prompt": "为这个问题生成一个检索用的表示",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 32,
                },
            },
        ],
        "eval": {
            "tasks": ["T2Retrieval"],
            "verbosity": 2,
            "output_folder": "outputs",
            "overwrite_results": True,
            "top_k": 5,
            "limits": 100,
        },
    },
}

参数说明#

  • eval_backend:默认值为 RAGEval,表示使用 RAGEval 评测后端。

  • eval_config:字典,包含以下字段:

    • tool:评测工具,使用 MTEB

    • model: 模型配置列表,单阶段评测时只能放置一个模型;两阶段评测传入两个模型,第一个模型用于检索,第二个模型用于reranking,包含以下字段:

      • model_name_or_path: str 模型名称或路径,支持从modelscope仓库自动下载模型。

      • is_cross_encoder: bool 模型是否为交叉编码器,默认为 False;reranking模型需设置为True

      • pooling_mode: Optional[str] 池化模式,默认为mean,可选值为:“cls”、“lasttoken”、“max”、“mean”、“mean_sqrt_len_tokens”或“weightedmean”。bge系列模型请设置为“cls”。

      • max_seq_length: int 最大序列长度,默认为 512。

      • prompt: str 用于检索任务在模型前的提示,默认为空字符串。

      • model_kwargs: dict 模型的关键字参数,默认值为 {"torch_dtype": "auto"}

      • config_kwargs: Dict[str, Any] 配置的关键字参数,默认为空字典。

      • encode_kwargs: dict 编码的关键字参数,默认值为:

        {  
            "show_progress_bar": True,  
            "batch_size": 32
        }  
        
      • hub: str 模型来源,可以是 "modelscope" 或 "huggingface"。

    • eval:字典,包含以下字段:

      • tasks: List[str] 任务名称,参见任务列表

      • top_k: int 选取前 K 个结果,检索任务使用

      • verbosity: int 详细程度,范围为 0-3

      • output_folder: str 输出文件夹,默认为 "outputs"

      • overwrite_results: bool 是否覆盖结果,默认为 True

      • limits: Optional[int] 限制样本数量,默认为 None;检索任务不建议设置

      • hub: str 数据集来源,可以是 "modelscope" 或 "huggingface"

模型评测#

from evalscope.run import run_task

# Run task
run_task(task_cfg=one_stage_task_cfg) 
# or 
# run_task(task_cfg=two_stage_task_cfg)

输出结果如下:

单阶段评测

输出:
outputs/m3e-base/master/TNews.json#
{
  "dataset_revision": "317f262bf1e6126357bbe89e875451e4b0938fe4",
  "evaluation_time": 16.50650382041931,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "validation": [
      {
        "accuracy": 0.4744,
        "f1": 0.44562489526640825,
        "f1_weighted": 0.47540307398330806,
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.4744,
        "scores_per_experiment": [
          {
            "accuracy": 0.48,
            "f1": 0.4536376605217497,
            "f1_weighted": 0.47800277926811163
          },
          {
            "accuracy": 0.48,
            "f1": 0.44713633954639176,
            "f1_weighted": 0.4826984434763292
          },
          {
            "accuracy": 0.462,
            "f1": 0.433365706955334,
            "f1_weighted": 0.4640970055245127
          },
          {
            "accuracy": 0.484,
            "f1": 0.4586732839614161,
            "f1_weighted": 0.4857359110392786
          },
          {
            "accuracy": 0.462,
            "f1": 0.4293797541165097,
            "f1_weighted": 0.4632657330831137
          },
          {
            "accuracy": 0.474,
            "f1": 0.44775120246296396,
            "f1_weighted": 0.4737182842092953
          },
          {
            "accuracy": 0.47,
            "f1": 0.4431197566080463,
            "f1_weighted": 0.4714830140231783
          },
          {
            "accuracy": 0.472,
            "f1": 0.44322381694059326,
            "f1_weighted": 0.47100005556357255
          },
          {
            "accuracy": 0.484,
            "f1": 0.45454749692062835,
            "f1_weighted": 0.4856239367465818
          },
          {
            "accuracy": 0.476,
            "f1": 0.44541393463044954,
            "f1_weighted": 0.47840557689910646
          }
        ]
      }
    ]
  },
  "task_name": "TNews"
}

两阶段评测

阶段一
outputs/stage1/m3e-base/v1/T2Retrieval.json#
{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 599.5170171260834,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.73143,
        "map_at_1": 0.22347,
        "map_at_10": 0.63237,
        "map_at_100": 0.67533,
        "map_at_1000": 0.67651,
        "map_at_20": 0.66282,
        "map_at_3": 0.43874,
        "map_at_5": 0.54049,
        "mrr_at_1": 0.7898912852884447,
        "mrr_at_10": 0.8402654617870331,
        "mrr_at_100": 0.8421827758769684,
        "mrr_at_1000": 0.8422583001072272,
        "mrr_at_20": 0.8415411456315557,
        "mrr_at_3": 0.8307469752761716,
        "mrr_at_5": 0.8368029984218875,
        "nauc_map_at_1000_diff1": 0.17749400860890877,
        "nauc_map_at_1000_max": 0.42844516520725967,
        "nauc_map_at_1000_std": 0.18789871694419072,
        "nauc_map_at_100_diff1": 0.17747467084779375,
        "nauc_map_at_100_max": 0.42732291785494575,
        "nauc_map_at_100_std": 0.18694287087286737,
        "nauc_map_at_10_diff1": 0.19976199493034202,
        "nauc_map_at_10_max": 0.3374436217668296,
        "nauc_map_at_10_std": 0.07951451707732717,
        "nauc_map_at_1_diff1": 0.41727578149080663,
        "nauc_map_at_1_max": -0.1402656422184478,
        "nauc_map_at_1_std": -0.26168722519030313,
        "nauc_map_at_20_diff1": 0.1811898211371171,
        "nauc_map_at_20_max": 0.40563441466210043,
        "nauc_map_at_20_std": 0.15927727170010608,
        "nauc_map_at_3_diff1": 0.31255422845809033,
        "nauc_map_at_3_max": 0.007523677231905161,
        "nauc_map_at_3_std": -0.19578481884353466,
        "nauc_map_at_5_diff1": 0.26073699217160473,
        "nauc_map_at_5_max": 0.14665611579604088,
        "nauc_map_at_5_std": -0.09600383298672226,
        "nauc_mrr_at_1000_diff1": 0.3819666309367981,
        "nauc_mrr_at_1000_max": 0.6285393024619401,
        "nauc_mrr_at_1000_std": 0.3294970299417527,
        "nauc_mrr_at_100_diff1": 0.3819436006743644,
        "nauc_mrr_at_100_max": 0.6286346262471935,
        "nauc_mrr_at_100_std": 0.32963045935037844,
        "nauc_mrr_at_10_diff1": 0.3819124721154632,
        "nauc_mrr_at_10_max": 0.6292778905762176,
        "nauc_mrr_at_10_std": 0.3298187966196067,
        "nauc_mrr_at_1_diff1": 0.3862589251033909,
        "nauc_mrr_at_1_max": 0.589976680174432,
        "nauc_mrr_at_1_std": 0.2780515387897469,
        "nauc_mrr_at_20_diff1": 0.38198959771391816,
        "nauc_mrr_at_20_max": 0.6290569436652999,
        "nauc_mrr_at_20_std": 0.3301570340189363,
        "nauc_mrr_at_3_diff1": 0.3825046940733129,
        "nauc_mrr_at_3_max": 0.6282507269128365,
        "nauc_mrr_at_3_std": 0.3260807934869131,
        "nauc_mrr_at_5_diff1": 0.3816317396711923,
        "nauc_mrr_at_5_max": 0.6288655177904692,
        "nauc_mrr_at_5_std": 0.3298854062538469,
        "nauc_ndcg_at_1000_diff1": 0.21319598381916555,
        "nauc_ndcg_at_1000_max": 0.5328295949130256,
        "nauc_ndcg_at_1000_std": 0.2946773445135694,
        "nauc_ndcg_at_100_diff1": 0.2089807772703975,
        "nauc_ndcg_at_100_max": 0.5239397690321543,
        "nauc_ndcg_at_100_std": 0.29123456982125717,
        "nauc_ndcg_at_10_diff1": 0.20555333230027603,
        "nauc_ndcg_at_10_max": 0.44316027023003046,
        "nauc_ndcg_at_10_std": 0.1921835220940756,
        "nauc_ndcg_at_1_diff1": 0.3862589251033909,
        "nauc_ndcg_at_1_max": 0.589976680174432,
        "nauc_ndcg_at_1_std": 0.2780515387897469,
        "nauc_ndcg_at_20_diff1": 0.20754208582741446,
        "nauc_ndcg_at_20_max": 0.4786092392092643,
        "nauc_ndcg_at_20_std": 0.23536973680564616,
        "nauc_ndcg_at_3_diff1": 0.1902823773882388,
        "nauc_ndcg_at_3_max": 0.5400466380622567,
        "nauc_ndcg_at_3_std": 0.2713874990424778,
        "nauc_ndcg_at_5_diff1": 0.18279298790691637,
        "nauc_ndcg_at_5_max": 0.4916119327522918,
        "nauc_ndcg_at_5_std": 0.2375397192963552,
        "nauc_precision_at_1000_diff1": -0.20510380600112582,
        "nauc_precision_at_1000_max": 0.4958820760698651,
        "nauc_precision_at_1000_std": 0.5402465580496146,
        "nauc_precision_at_100_diff1": -0.1994322347949809,
        "nauc_precision_at_100_max": 0.5206762748551254,
        "nauc_precision_at_100_std": 0.5568154081333078,
        "nauc_precision_at_10_diff1": -0.16707155441197413,
        "nauc_precision_at_10_max": 0.5600612846655972,
        "nauc_precision_at_10_std": 0.49419688804691536,
        "nauc_precision_at_1_diff1": 0.3862589251033909,
        "nauc_precision_at_1_max": 0.589976680174432,
        "nauc_precision_at_1_std": 0.2780515387897469,
        "nauc_precision_at_20_diff1": -0.18471041949530417,
        "nauc_precision_at_20_max": 0.5458950955439645,
        "nauc_precision_at_20_std": 0.5355982267058214,
        "nauc_precision_at_3_diff1": -0.03826790088047189,
        "nauc_precision_at_3_max": 0.5833083970750171,
        "nauc_precision_at_3_std": 0.380196662597275,
        "nauc_precision_at_5_diff1": -0.11789367842600275,
        "nauc_precision_at_5_max": 0.5708494593335263,
        "nauc_precision_at_5_std": 0.42860609671688105,
        "nauc_recall_at_1000_diff1": 0.1341309660059583,
        "nauc_recall_at_1000_max": 0.5923755841077135,
        "nauc_recall_at_1000_std": 0.5980459502693942,
        "nauc_recall_at_100_diff1": 0.12181394285840096,
        "nauc_recall_at_100_max": 0.47090136790318127,
        "nauc_recall_at_100_std": 0.3959369184297595,
        "nauc_recall_at_10_diff1": 0.17356300971546512,
        "nauc_recall_at_10_max": 0.25475707245853674,
        "nauc_recall_at_10_std": 0.041819982320384745,
        "nauc_recall_at_1_diff1": 0.41727578149080663,
        "nauc_recall_at_1_max": -0.1402656422184478,
        "nauc_recall_at_1_std": -0.26168722519030313,
        "nauc_recall_at_20_diff1": 0.14273713155999543,
        "nauc_recall_at_20_max": 0.36251116771924663,
        "nauc_recall_at_20_std": 0.1912123941692314,
        "nauc_recall_at_3_diff1": 0.2873719855400218,
        "nauc_recall_at_3_max": -0.041198403561830285,
        "nauc_recall_at_3_std": -0.21921947922872737,
        "nauc_recall_at_5_diff1": 0.23680082643694844,
        "nauc_recall_at_5_max": 0.06580524171324151,
        "nauc_recall_at_5_std": -0.14104561361502632,
        "ndcg_at_1": 0.78989,
        "ndcg_at_10": 0.73143,
        "ndcg_at_100": 0.78829,
        "ndcg_at_1000": 0.80026,
        "ndcg_at_20": 0.75787,
        "ndcg_at_3": 0.7417,
        "ndcg_at_5": 0.72641,
        "precision_at_1": 0.78989,
        "precision_at_10": 0.37304,
        "precision_at_100": 0.04828,
        "precision_at_1000": 0.00511,
        "precision_at_20": 0.21403,
        "precision_at_3": 0.65461,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.22347,
        "recall_at_10": 0.73318,
        "recall_at_100": 0.91093,
        "recall_at_1000": 0.97197,
        "recall_at_20": 0.81286,
        "recall_at_3": 0.46573,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}
阶段二
outputs/stage2/jina-reranker-v2-base-multilingual/master/T2Retrieval.json#
{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 332.15709686279297,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.661,
        "map_at_1": 0.24264,
        "map_at_10": 0.56291,
        "map_at_100": 0.56291,
        "map_at_1000": 0.56291,
        "map_at_20": 0.56291,
        "map_at_3": 0.4714,
        "map_at_5": 0.56291,
        "mrr_at_1": 0.841969139049623,
        "mrr_at_10": 0.8689147524694633,
        "mrr_at_100": 0.8689147524694633,
        "mrr_at_1000": 0.8689147524694633,
        "mrr_at_20": 0.8689147524694633,
        "mrr_at_3": 0.8664883979192248,
        "mrr_at_5": 0.8689147524694633,
        "nauc_map_at_1000_diff1": 0.12071580301051653,
        "nauc_map_at_1000_max": 0.2536691069727338,
        "nauc_map_at_1000_std": 0.343624832364704,
        "nauc_map_at_100_diff1": 0.12071580301051653,
        "nauc_map_at_100_max": 0.2536691069727338,
        "nauc_map_at_100_std": 0.343624832364704,
        "nauc_map_at_10_diff1": 0.12071580301051653,
        "nauc_map_at_10_max": 0.2536691069727338,
        "nauc_map_at_10_std": 0.343624832364704,
        "nauc_map_at_1_diff1": 0.47964980727810325,
        "nauc_map_at_1_max": -0.08015044571696166,
        "nauc_map_at_1_std": 0.3507257834956417,
        "nauc_map_at_20_diff1": 0.12071580301051653,
        "nauc_map_at_20_max": 0.2536691069727338,
        "nauc_map_at_20_std": 0.343624832364704,
        "nauc_map_at_3_diff1": 0.23481937699306626,
        "nauc_map_at_3_max": 0.10372745264123306,
        "nauc_map_at_3_std": 0.45345158923063256,
        "nauc_map_at_5_diff1": 0.12071580301051653,
        "nauc_map_at_5_max": 0.2536691069727338,
        "nauc_map_at_5_std": 0.343624832364704,
        "nauc_mrr_at_1000_diff1": 0.23393918304502795,
        "nauc_mrr_at_1000_max": 0.8703379129725659,
        "nauc_mrr_at_1000_std": 0.5785333616122065,
        "nauc_mrr_at_100_diff1": 0.23393918304502795,
        "nauc_mrr_at_100_max": 0.8703379129725659,
        "nauc_mrr_at_100_std": 0.5785333616122065,
        "nauc_mrr_at_10_diff1": 0.23393918304502795,
        "nauc_mrr_at_10_max": 0.8703379129725659,
        "nauc_mrr_at_10_std": 0.5785333616122065,
        "nauc_mrr_at_1_diff1": 0.2520016067648708,
        "nauc_mrr_at_1_max": 0.8560897633767299,
        "nauc_mrr_at_1_std": 0.5642467684745208,
        "nauc_mrr_at_20_diff1": 0.23393918304502795,
        "nauc_mrr_at_20_max": 0.8703379129725659,
        "nauc_mrr_at_20_std": 0.5785333616122065,
        "nauc_mrr_at_3_diff1": 0.2343988881957151,
        "nauc_mrr_at_3_max": 0.8695482778251757,
        "nauc_mrr_at_3_std": 0.5799167198804328,
        "nauc_mrr_at_5_diff1": 0.23393918304502795,
        "nauc_mrr_at_5_max": 0.8703379129725659,
        "nauc_mrr_at_5_std": 0.5785333616122065,
        "nauc_ndcg_at_1000_diff1": 0.11252208055013257,
        "nauc_ndcg_at_1000_max": 0.3417865079349515,
        "nauc_ndcg_at_1000_std": 0.3623961771041499,
        "nauc_ndcg_at_100_diff1": 0.11252208055013257,
        "nauc_ndcg_at_100_max": 0.3417865079349515,
        "nauc_ndcg_at_100_std": 0.3623961771041499,
        "nauc_ndcg_at_10_diff1": 0.10015448775533999,
        "nauc_ndcg_at_10_max": 0.3761759074862075,
        "nauc_ndcg_at_10_std": 0.35152523471339914,
        "nauc_ndcg_at_1_diff1": 0.2524564785684737,
        "nauc_ndcg_at_1_max": 0.8566368743831702,
        "nauc_ndcg_at_1_std": 0.5635391925059349,
        "nauc_ndcg_at_20_diff1": 0.11228113618796766,
        "nauc_ndcg_at_20_max": 0.34274993051851965,
        "nauc_ndcg_at_20_std": 0.36216437469674284,
        "nauc_ndcg_at_3_diff1": -0.062134030685870506,
        "nauc_ndcg_at_3_max": 0.7183183844837573,
        "nauc_ndcg_at_3_std": 0.3352626268658533,
        "nauc_ndcg_at_5_diff1": -0.04476981761624879,
        "nauc_ndcg_at_5_max": 0.6272060974309411,
        "nauc_ndcg_at_5_std": 0.21341258393783158,
        "nauc_precision_at_1000_diff1": -0.3554940965683014,
        "nauc_precision_at_1000_max": 0.605443274008298,
        "nauc_precision_at_1000_std": -0.13073611213585504,
        "nauc_precision_at_100_diff1": -0.35549409656830133,
        "nauc_precision_at_100_max": 0.6054432740082977,
        "nauc_precision_at_100_std": -0.13073611213585531,
        "nauc_precision_at_10_diff1": -0.3554940965683011,
        "nauc_precision_at_10_max": 0.6054432740082981,
        "nauc_precision_at_10_std": -0.1307361121358551,
        "nauc_precision_at_1_diff1": 0.2524564785684737,
        "nauc_precision_at_1_max": 0.8566368743831702,
        "nauc_precision_at_1_std": 0.5635391925059349,
        "nauc_precision_at_20_diff1": -0.3554940965683011,
        "nauc_precision_at_20_max": 0.6054432740082981,
        "nauc_precision_at_20_std": -0.1307361121358551,
        "nauc_precision_at_3_diff1": -0.3377658698816377,
        "nauc_precision_at_3_max": 0.6780151277792397,
        "nauc_precision_at_3_std": 0.12291559606586676,
        "nauc_precision_at_5_diff1": -0.3554940965683011,
        "nauc_precision_at_5_max": 0.6054432740082981,
        "nauc_precision_at_5_std": -0.1307361121358551,
        "nauc_recall_at_1000_diff1": 0.1091970342988605,
        "nauc_recall_at_1000_max": 0.18339955163544436,
        "nauc_recall_at_1000_std": 0.30756376767627086,
        "nauc_recall_at_100_diff1": 0.1091970342988605,
        "nauc_recall_at_100_max": 0.18339955163544436,
        "nauc_recall_at_100_std": 0.30756376767627086,
        "nauc_recall_at_10_diff1": 0.1091970342988605,
        "nauc_recall_at_10_max": 0.18339955163544436,
        "nauc_recall_at_10_std": 0.30756376767627086,
        "nauc_recall_at_1_diff1": 0.47964980727810325,
        "nauc_recall_at_1_max": -0.08015044571696166,
        "nauc_recall_at_1_std": 0.3507257834956417,
        "nauc_recall_at_20_diff1": 0.1091970342988605,
        "nauc_recall_at_20_max": 0.18339955163544436,
        "nauc_recall_at_20_std": 0.30756376767627086,
        "nauc_recall_at_3_diff1": 0.22013063499116758,
        "nauc_recall_at_3_max": 0.054749114965246065,
        "nauc_recall_at_3_std": 0.4258163949018153,
        "nauc_recall_at_5_diff1": 0.1091970342988605,
        "nauc_recall_at_5_max": 0.18339955163544436,
        "nauc_recall_at_5_std": 0.30756376767627086,
        "ndcg_at_1": 0.84188,
        "ndcg_at_10": 0.661,
        "ndcg_at_100": 0.6534,
        "ndcg_at_1000": 0.6534,
        "ndcg_at_20": 0.65358,
        "ndcg_at_3": 0.7826,
        "ndcg_at_5": 0.74517,
        "precision_at_1": 0.84188,
        "precision_at_10": 0.27471,
        "precision_at_100": 0.02747,
        "precision_at_1000": 0.00275,
        "precision_at_20": 0.13736,
        "precision_at_3": 0.68633,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.24264,
        "recall_at_10": 0.59383,
        "recall_at_100": 0.59383,
        "recall_at_1000": 0.59383,
        "recall_at_20": 0.59383,
        "recall_at_3": 0.48934,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}

自定义评测数据集#