CLIP Benchmark#
本框架支持CLIP Benchmark,其旨在为评测和分析CLIP(Contrastive Language-Image Pretraining)及其变体提供一个统一的框架和基准,目前框架支持43个评测数据集,包括zero-shot retireval任务,评价指标为recall@k;zero-shot classification任务,评价指标为acc@k。
支持的数据集#
数据集名称 |
任务类型 |
备注 |
---|---|---|
zeroshot_retrieval |
中文多模态图文数据集 |
|
zeroshot_retrieval |
||
zeroshot_retrieval |
||
zeroshot_retrieval |
||
zeroshot_retrieval |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
||
zeroshot_classification |
环境准备#
安装依赖包
pip install evalscope[rag] -U
配置评测参数#
task_cfg = {
"eval_backend": "RAGEval",
"eval_config": {
"tool": "clip_benchmark",
"eval": {
"models": [
{
"model_name": "AI-ModelScope/chinese-clip-vit-large-patch14-336px",
}
],
"dataset_name": ["muge", "flickr8k"],
"split": "test",
"batch_size": 128,
"num_workers": 1,
"verbose": True,
"skip_existing": False,
"output_dir": "outputs",
"cache_dir": "cache",
"limit": 1000,
},
},
}
参数说明:
eval_backend
:默认值为RAGEval
,表示使用 RAGEval 评测后端。eval_config
:字典,包含以下字段:tool
:评测工具,使用clip_benchmark
。eval
:字典,包含以下字段:models
:模型配置列表,包含以下字段:model_name
:str
模型名称或路径,例如AI-ModelScope/chinese-clip-vit-large-patch14-336px
,支持从modelscope仓库自动下载模型。
dataset_name
:List[str]
数据集名称列表,例如["muge", "flickr8k", "mnist"]
,参见任务列表。split
:str
数据集的划分部分,默认为test
。batch_size
:int
数据加载的批量大小,默认为128
。num_workers
:int
数据加载的工作线程数,默认为1
。verbose
:bool
是否启用详细日志记录,默认为True
。skip_existing
:bool
如果输出已经存在,是否跳过处理,默认为False
。output_dir
:str
输出目录,默认为outputs
。cache_dir
:str
数据集缓存目录,默认为cache
。limit
:Optional[int]
限制处理样本的数量,默认为None
,例如1000
。
运行评测任务#
from evalscope.run import run_task
run_task(task_cfg=task_cfg)
输出评测结果如下:
{"dataset": "muge", "model": "AI-ModelScope/chinese-clip-vit-large-patch14-336px", "task": "zeroshot_retrieval", "metrics": {"image_retrieval_recall@5": 0.8935546875, "text_retrieval_recall@5": 0.876953125}}
自定义评测数据集#
参见