MTEB#

This framework supports MTEB and CMTEB, with the following details:

  • MTEB (Massive Text Embedding Benchmark) is a large-scale benchmark designed to measure the performance of text embedding models across diverse embedding tasks. MTEB includes 56 datasets covering 8 tasks and supports over 112 different languages. The goal of this benchmark is to assist developers in finding the best text embedding models suitable for various tasks.

  • C-MTEB (Chinese Massive Text Embedding Benchmark) is a dedicated evaluation benchmark for Chinese text vectors, built on MTEB, aimed at assessing the performance of Chinese text vector models. C-MTEB collects 35 public datasets and is divided into 6 categories of evaluation tasks, including retrieval, re-ranking, semantic text similarity (STS), classification, pair classification, and clustering.

Supported Datasets#

Here is an overview of the available tasks and datasets in C-MTEB:

Name

Hub Link

Description

Type

Category

Number of Test Samples

T2Retrieval

C-MTEB/T2Retrieval

T2Ranking: A large-scale Chinese paragraph ranking benchmark

Retrieval

s2p

24,832

MMarcoRetrieval

C-MTEB/MMarcoRetrieval

mMARCO is the multilingual version of the MS MARCO paragraph ranking dataset

Retrieval

s2p

7,437

DuRetrieval

C-MTEB/DuRetrieval

A large-scale Chinese web search engine paragraph retrieval benchmark

Retrieval

s2p

4,000

CovidRetrieval

C-MTEB/CovidRetrieval

COVID-19 news articles

Retrieval

s2p

949

CmedqaRetrieval

C-MTEB/CmedqaRetrieval

Online medical consultation texts

Retrieval

s2p

3,999

EcomRetrieval

C-MTEB/EcomRetrieval

Paragraph retrieval dataset collected from Alibaba e-commerce search engine systems

Retrieval

s2p

1,000

MedicalRetrieval

C-MTEB/MedicalRetrieval

Paragraph retrieval dataset collected from Alibaba medical search engine systems

Retrieval

s2p

1,000

VideoRetrieval

C-MTEB/VideoRetrieval

Paragraph retrieval dataset collected from Alibaba video search engine systems

Retrieval

s2p

1,000

T2Reranking

C-MTEB/T2Reranking

T2Ranking: A large-scale Chinese paragraph ranking benchmark

Re-ranking

s2p

24,382

MMarcoReranking

C-MTEB/MMarco-reranking

mMARCO is the multilingual version of the MS MARCO paragraph ranking dataset

Re-ranking

s2p

7,437

CMedQAv1

C-MTEB/CMedQAv1-reranking

Chinese community medical Q&A

Re-ranking

s2p

2,000

CMedQAv2

C-MTEB/CMedQAv2-reranking

Chinese community medical Q&A

Re-ranking

s2p

4,000

Ocnli

C-MTEB/OCNLI

Original Chinese natural language inference dataset

Pair Classification

s2s

3,000

Cmnli

C-MTEB/CMNLI

Chinese multi-class natural language inference

Pair Classification

s2s

139,000

CLSClusteringS2S

C-MTEB/CLSClusteringS2S

Clustering titles from the CLS dataset. Clustering based on 13 sets of main categories.

Clustering

s2s

10,000

CLSClusteringP2P

C-MTEB/CLSClusteringP2P

Clustering titles + abstracts from the CLS dataset. Clustering based on 13 sets of main categories.

Clustering

p2p

10,000

ThuNewsClusteringS2S

C-MTEB/ThuNewsClusteringS2S

Clustering titles from the THUCNews dataset

Clustering

s2s

10,000

ThuNewsClusteringP2P

C-MTEB/ThuNewsClusteringP2P

Clustering titles + abstracts from the THUCNews dataset

Clustering

p2p

10,000

ATEC

C-MTEB/ATEC

ATEC NLP Sentence Pair Similarity Competition

STS

s2s

20,000

BQ

C-MTEB/BQ

Banking Question Semantic Similarity

STS

s2s

10,000

LCQMC

C-MTEB/LCQMC

Large-scale Chinese Question Matching Corpus

STS

s2s

12,500

PAWSX

C-MTEB/PAWSX

Translated PAWS evaluation pairs

STS

s2s

2,000

STSB

C-MTEB/STSB

Translated STS-B into Chinese

STS

s2s

1,360

AFQMC

C-MTEB/AFQMC

Ant Financial Question Matching Corpus

STS

s2s

3,861

QBQTC

C-MTEB/QBQTC

QQ Browser Query Title Corpus

STS

s2s

5,000

TNews

C-MTEB/TNews-classification

News Short Text Classification

Classification

s2s

10,000

IFlyTek

C-MTEB/IFlyTek-classification

Long Text Classification of Application Descriptions

Classification

s2s

2,600

Waimai

C-MTEB/waimai-classification

Sentiment Analysis of User Reviews on Food Delivery Platforms

Classification

s2s

1,000

OnlineShopping

C-MTEB/OnlineShopping-classification

Sentiment Analysis of User Reviews on Online Shopping Websites

Classification

s2s

1,000

MultilingualSentiment

C-MTEB/MultilingualSentiment-classification

A set of multilingual sentiment datasets grouped into three categories: positive, neutral, negative

Classification

s2s

3,000

JDReview

C-MTEB/JDReview-classification

Reviews of iPhone

Classification

s2s

533

For retrieval tasks, a sample of 100,000 candidates (including the ground truth) is drawn from the entire corpus to reduce inference costs.

Environment Setup#

Install dependencies

pip install mteb

Configure Evaluation Parameters#

The framework supports two evaluation modes: single-stage evaluation and two-stage evaluation:

  • Single-Stage Evaluation: Directly use the model for prediction and compute metrics. Supports tasks such as retrieval, re-ranking, and classification for embedding models.

  • Two-Stage Evaluation: Use the model for retrieval first, then use the model for re-ranking, and compute metrics. Supports re-ranking models.

Single-stage Evaluation#

Example configuration file:

one_stage_task_cfg = {
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "pooling_mode": None,
                "max_seq_length": 512,
                "prompt": "",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 128,
                },
            }
        ],
        "eval": {
            "tasks": [
                "TNews",
                "CLSClusteringS2S",
                "T2Reranking",
                "T2Retrieval",
                "ATEC",
            ],
            "verbosity": 2,
            "output_folder": "outputs",
            "overwrite_results": True,
            "topk": 10,
            "limits": 500,
        },
    },
}

Two-stage Evaluation#

Example configuration file: first perform retrieval, then reranking:

two_stage_task_cfg = {
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "is_cross_encoder": False,
                "max_seq_length": 512,
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 64,
                },
            },
            {
                "model_name_or_path": "OpenBMB/MiniCPM-Reranker",
                "is_cross_encoder": True,
                "max_seq_length": 512,
                "prompt": "Generate a retrieval representation for this question",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 32,
                },
            },
        ],
        "eval": {
            "tasks": ["T2Retrieval"],
            "verbosity": 2,
            "output_folder": "outputs",
            "overwrite_results": True,
            "topk": 5,
            "limits": 100,
        },
    },
}

Parameter Explanation#

  • eval_backend: Default value is RAGEval, indicating the use of the RAGEval evaluation backend.

  • eval_config: A dictionary containing the following fields:

    • tool: Evaluation tool, using MTEB.

    • model: List of model configurations. For single-stage evaluation, only one model can be placed; for two-stage evaluation, two models are passed in, with the first model used for retrieval and the second model used for reranking, including the following fields:

      • model_name_or_path: str Model name or path, supports automatic download from the modelscope repository.

      • is_cross_encoder: bool Whether the model is a cross-encoder, default is False; reranking models should be set to True.

      • pooling_mode: Optional[str] Pooling mode, default is mean, optional values are: “cls”, “lasttoken”, “max”, “mean”, “mean_sqrt_len_tokens”, or “weightedmean”. For bge series models, please set to “cls”.

      • max_seq_length: int Maximum sequence length, default is 512.

      • prompt: str Prompt for retrieval tasks in front of the model, default is an empty string.

      • model_kwargs: dict Keyword arguments for the model, default is {"torch_dtype": "auto"}.

      • config_kwargs: Dict[str, Any] Keyword arguments for configuration, default is an empty dictionary.

      • encode_kwargs: dict Keyword arguments for encoding, default is:

        {  
            "show_progress_bar": True,  
            "batch_size": 32
        }  
        
      • hub: str Source of the model, can be “modelscope” or “huggingface”.

    • eval: A dictionary containing the following fields:

      • tasks: List[str] Task names, refer to the task list

      • top_k: int Select the top K results, for retrieval tasks

      • verbosity: int Level of detail, ranging from 0-3

      • output_folder: str Output folder, default is “outputs”

      • overwrite_results: bool Whether to overwrite results, default is True

      • limits: Optional[int] Limit on the number of samples, default is None; not recommended to set for retrieval tasks

      • hub: str Source of the dataset, can be “modelscope” or “huggingface”

Model Evaluation#

from evalscope.run import run_task
from evalscope.utils.logger import get_logger
logger = get_logger()

one_stage_task_cfg = one_stage_task_cfg
# or
# two_stage_task_cfg = two_stage_task_cfg

# Run task
run_task(task_cfg=one_stage_task_cfg) 
# or 
# run_task(task_cfg=two_stage_task_cfg)

The following is an example of the output:

One-Stage Evaluation

Outputs
outputs/m3e-base/master/TNews.json#
{
  "dataset_revision": "317f262bf1e6126357bbe89e875451e4b0938fe4",
  "evaluation_time": 16.50650382041931,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "validation": [
      {
        "accuracy": 0.4744,
        "f1": 0.44562489526640825,
        "f1_weighted": 0.47540307398330806,
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.4744,
        "scores_per_experiment": [
          {
            "accuracy": 0.48,
            "f1": 0.4536376605217497,
            "f1_weighted": 0.47800277926811163
          },
          {
            "accuracy": 0.48,
            "f1": 0.44713633954639176,
            "f1_weighted": 0.4826984434763292
          },
          {
            "accuracy": 0.462,
            "f1": 0.433365706955334,
            "f1_weighted": 0.4640970055245127
          },
          {
            "accuracy": 0.484,
            "f1": 0.4586732839614161,
            "f1_weighted": 0.4857359110392786
          },
          {
            "accuracy": 0.462,
            "f1": 0.4293797541165097,
            "f1_weighted": 0.4632657330831137
          },
          {
            "accuracy": 0.474,
            "f1": 0.44775120246296396,
            "f1_weighted": 0.4737182842092953
          },
          {
            "accuracy": 0.47,
            "f1": 0.4431197566080463,
            "f1_weighted": 0.4714830140231783
          },
          {
            "accuracy": 0.472,
            "f1": 0.44322381694059326,
            "f1_weighted": 0.47100005556357255
          },
          {
            "accuracy": 0.484,
            "f1": 0.45454749692062835,
            "f1_weighted": 0.4856239367465818
          },
          {
            "accuracy": 0.476,
            "f1": 0.44541393463044954,
            "f1_weighted": 0.47840557689910646
          }
        ]
      }
    ]
  },
  "task_name": "TNews"
}

Two-stage Evaluation

first stage
outputs/stage1/m3e-base/v1/T2Retrieval.json#
{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 599.5170171260834,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.73143,
        "map_at_1": 0.22347,
        "map_at_10": 0.63237,
        "map_at_100": 0.67533,
        "map_at_1000": 0.67651,
        "map_at_20": 0.66282,
        "map_at_3": 0.43874,
        "map_at_5": 0.54049,
        "mrr_at_1": 0.7898912852884447,
        "mrr_at_10": 0.8402654617870331,
        "mrr_at_100": 0.8421827758769684,
        "mrr_at_1000": 0.8422583001072272,
        "mrr_at_20": 0.8415411456315557,
        "mrr_at_3": 0.8307469752761716,
        "mrr_at_5": 0.8368029984218875,
        "nauc_map_at_1000_diff1": 0.17749400860890877,
        "nauc_map_at_1000_max": 0.42844516520725967,
        "nauc_map_at_1000_std": 0.18789871694419072,
        "nauc_map_at_100_diff1": 0.17747467084779375,
        "nauc_map_at_100_max": 0.42732291785494575,
        "nauc_map_at_100_std": 0.18694287087286737,
        "nauc_map_at_10_diff1": 0.19976199493034202,
        "nauc_map_at_10_max": 0.3374436217668296,
        "nauc_map_at_10_std": 0.07951451707732717,
        "nauc_map_at_1_diff1": 0.41727578149080663,
        "nauc_map_at_1_max": -0.1402656422184478,
        "nauc_map_at_1_std": -0.26168722519030313,
        "nauc_map_at_20_diff1": 0.1811898211371171,
        "nauc_map_at_20_max": 0.40563441466210043,
        "nauc_map_at_20_std": 0.15927727170010608,
        "nauc_map_at_3_diff1": 0.31255422845809033,
        "nauc_map_at_3_max": 0.007523677231905161,
        "nauc_map_at_3_std": -0.19578481884353466,
        "nauc_map_at_5_diff1": 0.26073699217160473,
        "nauc_map_at_5_max": 0.14665611579604088,
        "nauc_map_at_5_std": -0.09600383298672226,
        "nauc_mrr_at_1000_diff1": 0.3819666309367981,
        "nauc_mrr_at_1000_max": 0.6285393024619401,
        "nauc_mrr_at_1000_std": 0.3294970299417527,
        "nauc_mrr_at_100_diff1": 0.3819436006743644,
        "nauc_mrr_at_100_max": 0.6286346262471935,
        "nauc_mrr_at_100_std": 0.32963045935037844,
        "nauc_mrr_at_10_diff1": 0.3819124721154632,
        "nauc_mrr_at_10_max": 0.6292778905762176,
        "nauc_mrr_at_10_std": 0.3298187966196067,
        "nauc_mrr_at_1_diff1": 0.3862589251033909,
        "nauc_mrr_at_1_max": 0.589976680174432,
        "nauc_mrr_at_1_std": 0.2780515387897469,
        "nauc_mrr_at_20_diff1": 0.38198959771391816,
        "nauc_mrr_at_20_max": 0.6290569436652999,
        "nauc_mrr_at_20_std": 0.3301570340189363,
        "nauc_mrr_at_3_diff1": 0.3825046940733129,
        "nauc_mrr_at_3_max": 0.6282507269128365,
        "nauc_mrr_at_3_std": 0.3260807934869131,
        "nauc_mrr_at_5_diff1": 0.3816317396711923,
        "nauc_mrr_at_5_max": 0.6288655177904692,
        "nauc_mrr_at_5_std": 0.3298854062538469,
        "nauc_ndcg_at_1000_diff1": 0.21319598381916555,
        "nauc_ndcg_at_1000_max": 0.5328295949130256,
        "nauc_ndcg_at_1000_std": 0.2946773445135694,
        "nauc_ndcg_at_100_diff1": 0.2089807772703975,
        "nauc_ndcg_at_100_max": 0.5239397690321543,
        "nauc_ndcg_at_100_std": 0.29123456982125717,
        "nauc_ndcg_at_10_diff1": 0.20555333230027603,
        "nauc_ndcg_at_10_max": 0.44316027023003046,
        "nauc_ndcg_at_10_std": 0.1921835220940756,
        "nauc_ndcg_at_1_diff1": 0.3862589251033909,
        "nauc_ndcg_at_1_max": 0.589976680174432,
        "nauc_ndcg_at_1_std": 0.2780515387897469,
        "nauc_ndcg_at_20_diff1": 0.20754208582741446,
        "nauc_ndcg_at_20_max": 0.4786092392092643,
        "nauc_ndcg_at_20_std": 0.23536973680564616,
        "nauc_ndcg_at_3_diff1": 0.1902823773882388,
        "nauc_ndcg_at_3_max": 0.5400466380622567,
        "nauc_ndcg_at_3_std": 0.2713874990424778,
        "nauc_ndcg_at_5_diff1": 0.18279298790691637,
        "nauc_ndcg_at_5_max": 0.4916119327522918,
        "nauc_ndcg_at_5_std": 0.2375397192963552,
        "nauc_precision_at_1000_diff1": -0.20510380600112582,
        "nauc_precision_at_1000_max": 0.4958820760698651,
        "nauc_precision_at_1000_std": 0.5402465580496146,
        "nauc_precision_at_100_diff1": -0.1994322347949809,
        "nauc_precision_at_100_max": 0.5206762748551254,
        "nauc_precision_at_100_std": 0.5568154081333078,
        "nauc_precision_at_10_diff1": -0.16707155441197413,
        "nauc_precision_at_10_max": 0.5600612846655972,
        "nauc_precision_at_10_std": 0.49419688804691536,
        "nauc_precision_at_1_diff1": 0.3862589251033909,
        "nauc_precision_at_1_max": 0.589976680174432,
        "nauc_precision_at_1_std": 0.2780515387897469,
        "nauc_precision_at_20_diff1": -0.18471041949530417,
        "nauc_precision_at_20_max": 0.5458950955439645,
        "nauc_precision_at_20_std": 0.5355982267058214,
        "nauc_precision_at_3_diff1": -0.03826790088047189,
        "nauc_precision_at_3_max": 0.5833083970750171,
        "nauc_precision_at_3_std": 0.380196662597275,
        "nauc_precision_at_5_diff1": -0.11789367842600275,
        "nauc_precision_at_5_max": 0.5708494593335263,
        "nauc_precision_at_5_std": 0.42860609671688105,
        "nauc_recall_at_1000_diff1": 0.1341309660059583,
        "nauc_recall_at_1000_max": 0.5923755841077135,
        "nauc_recall_at_1000_std": 0.5980459502693942,
        "nauc_recall_at_100_diff1": 0.12181394285840096,
        "nauc_recall_at_100_max": 0.47090136790318127,
        "nauc_recall_at_100_std": 0.3959369184297595,
        "nauc_recall_at_10_diff1": 0.17356300971546512,
        "nauc_recall_at_10_max": 0.25475707245853674,
        "nauc_recall_at_10_std": 0.041819982320384745,
        "nauc_recall_at_1_diff1": 0.41727578149080663,
        "nauc_recall_at_1_max": -0.1402656422184478,
        "nauc_recall_at_1_std": -0.26168722519030313,
        "nauc_recall_at_20_diff1": 0.14273713155999543,
        "nauc_recall_at_20_max": 0.36251116771924663,
        "nauc_recall_at_20_std": 0.1912123941692314,
        "nauc_recall_at_3_diff1": 0.2873719855400218,
        "nauc_recall_at_3_max": -0.041198403561830285,
        "nauc_recall_at_3_std": -0.21921947922872737,
        "nauc_recall_at_5_diff1": 0.23680082643694844,
        "nauc_recall_at_5_max": 0.06580524171324151,
        "nauc_recall_at_5_std": -0.14104561361502632,
        "ndcg_at_1": 0.78989,
        "ndcg_at_10": 0.73143,
        "ndcg_at_100": 0.78829,
        "ndcg_at_1000": 0.80026,
        "ndcg_at_20": 0.75787,
        "ndcg_at_3": 0.7417,
        "ndcg_at_5": 0.72641,
        "precision_at_1": 0.78989,
        "precision_at_10": 0.37304,
        "precision_at_100": 0.04828,
        "precision_at_1000": 0.00511,
        "precision_at_20": 0.21403,
        "precision_at_3": 0.65461,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.22347,
        "recall_at_10": 0.73318,
        "recall_at_100": 0.91093,
        "recall_at_1000": 0.97197,
        "recall_at_20": 0.81286,
        "recall_at_3": 0.46573,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}
second stage
outputs/stage2/jina-reranker-v2-base-multilingual/master/T2Retrieval.json#
{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 332.15709686279297,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.661,
        "map_at_1": 0.24264,
        "map_at_10": 0.56291,
        "map_at_100": 0.56291,
        "map_at_1000": 0.56291,
        "map_at_20": 0.56291,
        "map_at_3": 0.4714,
        "map_at_5": 0.56291,
        "mrr_at_1": 0.841969139049623,
        "mrr_at_10": 0.8689147524694633,
        "mrr_at_100": 0.8689147524694633,
        "mrr_at_1000": 0.8689147524694633,
        "mrr_at_20": 0.8689147524694633,
        "mrr_at_3": 0.8664883979192248,
        "mrr_at_5": 0.8689147524694633,
        "nauc_map_at_1000_diff1": 0.12071580301051653,
        "nauc_map_at_1000_max": 0.2536691069727338,
        "nauc_map_at_1000_std": 0.343624832364704,
        "nauc_map_at_100_diff1": 0.12071580301051653,
        "nauc_map_at_100_max": 0.2536691069727338,
        "nauc_map_at_100_std": 0.343624832364704,
        "nauc_map_at_10_diff1": 0.12071580301051653,
        "nauc_map_at_10_max": 0.2536691069727338,
        "nauc_map_at_10_std": 0.343624832364704,
        "nauc_map_at_1_diff1": 0.47964980727810325,
        "nauc_map_at_1_max": -0.08015044571696166,
        "nauc_map_at_1_std": 0.3507257834956417,
        "nauc_map_at_20_diff1": 0.12071580301051653,
        "nauc_map_at_20_max": 0.2536691069727338,
        "nauc_map_at_20_std": 0.343624832364704,
        "nauc_map_at_3_diff1": 0.23481937699306626,
        "nauc_map_at_3_max": 0.10372745264123306,
        "nauc_map_at_3_std": 0.45345158923063256,
        "nauc_map_at_5_diff1": 0.12071580301051653,
        "nauc_map_at_5_max": 0.2536691069727338,
        "nauc_map_at_5_std": 0.343624832364704,
        "nauc_mrr_at_1000_diff1": 0.23393918304502795,
        "nauc_mrr_at_1000_max": 0.8703379129725659,
        "nauc_mrr_at_1000_std": 0.5785333616122065,
        "nauc_mrr_at_100_diff1": 0.23393918304502795,
        "nauc_mrr_at_100_max": 0.8703379129725659,
        "nauc_mrr_at_100_std": 0.5785333616122065,
        "nauc_mrr_at_10_diff1": 0.23393918304502795,
        "nauc_mrr_at_10_max": 0.8703379129725659,
        "nauc_mrr_at_10_std": 0.5785333616122065,
        "nauc_mrr_at_1_diff1": 0.2520016067648708,
        "nauc_mrr_at_1_max": 0.8560897633767299,
        "nauc_mrr_at_1_std": 0.5642467684745208,
        "nauc_mrr_at_20_diff1": 0.23393918304502795,
        "nauc_mrr_at_20_max": 0.8703379129725659,
        "nauc_mrr_at_20_std": 0.5785333616122065,
        "nauc_mrr_at_3_diff1": 0.2343988881957151,
        "nauc_mrr_at_3_max": 0.8695482778251757,
        "nauc_mrr_at_3_std": 0.5799167198804328,
        "nauc_mrr_at_5_diff1": 0.23393918304502795,
        "nauc_mrr_at_5_max": 0.8703379129725659,
        "nauc_mrr_at_5_std": 0.5785333616122065,
        "nauc_ndcg_at_1000_diff1": 0.11252208055013257,
        "nauc_ndcg_at_1000_max": 0.3417865079349515,
        "nauc_ndcg_at_1000_std": 0.3623961771041499,
        "nauc_ndcg_at_100_diff1": 0.11252208055013257,
        "nauc_ndcg_at_100_max": 0.3417865079349515,
        "nauc_ndcg_at_100_std": 0.3623961771041499,
        "nauc_ndcg_at_10_diff1": 0.10015448775533999,
        "nauc_ndcg_at_10_max": 0.3761759074862075,
        "nauc_ndcg_at_10_std": 0.35152523471339914,
        "nauc_ndcg_at_1_diff1": 0.2524564785684737,
        "nauc_ndcg_at_1_max": 0.8566368743831702,
        "nauc_ndcg_at_1_std": 0.5635391925059349,
        "nauc_ndcg_at_20_diff1": 0.11228113618796766,
        "nauc_ndcg_at_20_max": 0.34274993051851965,
        "nauc_ndcg_at_20_std": 0.36216437469674284,
        "nauc_ndcg_at_3_diff1": -0.062134030685870506,
        "nauc_ndcg_at_3_max": 0.7183183844837573,
        "nauc_ndcg_at_3_std": 0.3352626268658533,
        "nauc_ndcg_at_5_diff1": -0.04476981761624879,
        "nauc_ndcg_at_5_max": 0.6272060974309411,
        "nauc_ndcg_at_5_std": 0.21341258393783158,
        "nauc_precision_at_1000_diff1": -0.3554940965683014,
        "nauc_precision_at_1000_max": 0.605443274008298,
        "nauc_precision_at_1000_std": -0.13073611213585504,
        "nauc_precision_at_100_diff1": -0.35549409656830133,
        "nauc_precision_at_100_max": 0.6054432740082977,
        "nauc_precision_at_100_std": -0.13073611213585531,
        "nauc_precision_at_10_diff1": -0.3554940965683011,
        "nauc_precision_at_10_max": 0.6054432740082981,
        "nauc_precision_at_10_std": -0.1307361121358551,
        "nauc_precision_at_1_diff1": 0.2524564785684737,
        "nauc_precision_at_1_max": 0.8566368743831702,
        "nauc_precision_at_1_std": 0.5635391925059349,
        "nauc_precision_at_20_diff1": -0.3554940965683011,
        "nauc_precision_at_20_max": 0.6054432740082981,
        "nauc_precision_at_20_std": -0.1307361121358551,
        "nauc_precision_at_3_diff1": -0.3377658698816377,
        "nauc_precision_at_3_max": 0.6780151277792397,
        "nauc_precision_at_3_std": 0.12291559606586676,
        "nauc_precision_at_5_diff1": -0.3554940965683011,
        "nauc_precision_at_5_max": 0.6054432740082981,
        "nauc_precision_at_5_std": -0.1307361121358551,
        "nauc_recall_at_1000_diff1": 0.1091970342988605,
        "nauc_recall_at_1000_max": 0.18339955163544436,
        "nauc_recall_at_1000_std": 0.30756376767627086,
        "nauc_recall_at_100_diff1": 0.1091970342988605,
        "nauc_recall_at_100_max": 0.18339955163544436,
        "nauc_recall_at_100_std": 0.30756376767627086,
        "nauc_recall_at_10_diff1": 0.1091970342988605,
        "nauc_recall_at_10_max": 0.18339955163544436,
        "nauc_recall_at_10_std": 0.30756376767627086,
        "nauc_recall_at_1_diff1": 0.47964980727810325,
        "nauc_recall_at_1_max": -0.08015044571696166,
        "nauc_recall_at_1_std": 0.3507257834956417,
        "nauc_recall_at_20_diff1": 0.1091970342988605,
        "nauc_recall_at_20_max": 0.18339955163544436,
        "nauc_recall_at_20_std": 0.30756376767627086,
        "nauc_recall_at_3_diff1": 0.22013063499116758,
        "nauc_recall_at_3_max": 0.054749114965246065,
        "nauc_recall_at_3_std": 0.4258163949018153,
        "nauc_recall_at_5_diff1": 0.1091970342988605,
        "nauc_recall_at_5_max": 0.18339955163544436,
        "nauc_recall_at_5_std": 0.30756376767627086,
        "ndcg_at_1": 0.84188,
        "ndcg_at_10": 0.661,
        "ndcg_at_100": 0.6534,
        "ndcg_at_1000": 0.6534,
        "ndcg_at_20": 0.65358,
        "ndcg_at_3": 0.7826,
        "ndcg_at_5": 0.74517,
        "precision_at_1": 0.84188,
        "precision_at_10": 0.27471,
        "precision_at_100": 0.02747,
        "precision_at_1000": 0.00275,
        "precision_at_20": 0.13736,
        "precision_at_3": 0.68633,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.24264,
        "recall_at_10": 0.59383,
        "recall_at_100": 0.59383,
        "recall_at_1000": 0.59383,
        "recall_at_20": 0.59383,
        "recall_at_3": 0.48934,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}

Custom Dataset Evaluation#