Quick Start#

Below is a quick guide for using EvalScope to conduct model inference performance testing. It supports OpenAI API format model services and various dataset formats, making it convenient for users to perform performance evaluations.

Environment Preparation#

EvalScope supports usage in Python environments. Users can install EvalScope via pip or from source. Here are examples of both installation methods:

# Install additional dependencies
pip install evalscope[perf] -U
git clone https://github.com/modelscope/evalscope.git
cd evalscope
pip install -e '.[perf]'

Basic Usage#

You can start the model inference performance testing tool using the following two methods (command line/Python script):

The example below demonstrates performance testing of the Qwen2.5-0.5B-Instruct model using the vLLM framework on an A100, with fixed input of 1024 tokens and output of 1024 tokens. Users can modify parameters according to their needs.

evalscope perf \
  --parallel 1 10 50 100 200 \
  --number 10 20 100 200 400 \
  --model Qwen2.5-0.5B-Instruct \
  --url http://127.0.0.1:8801/v1/chat/completions \
  --api openai \
  --dataset random \
  --max-tokens 1024 \
  --min-tokens 1024 \
  --prefix-length 0 \
  --min-prompt-length 1024 \
  --max-prompt-length 1024 \
  --tokenizer-path Qwen/Qwen2.5-0.5B-Instruct \
  --extra-args '{"ignore_eos": true}'
from evalscope.perf.main import run_perf_benchmark
from evalscope.perf.arguments import Arguments

task_cfg = Arguments(
    parallel=[1, 10, 50, 100, 200],
    number=[10, 20, 100, 200, 400],
    model='Qwen2.5-0.5B-Instruct',
    url='http://127.0.0.1:8801/v1/chat/completions',
    api='openai',
    dataset='random',
    min_tokens=1024,
    max_tokens=1024,
    prefix_length=0,
    min_prompt_length=1024,
    max_prompt_length=1024,
    tokenizer_path='Qwen/Qwen2.5-0.5B-Instruct',
    extra_args={'ignore_eos': True}
)
results = run_perf_benchmark(task_cfg)

Parameter description:

  • parallel: Number of concurrent requests, multiple values can be passed, separated by spaces

  • number: Number of requests for each concurrency, multiple values can be passed, separated by spaces (corresponding one-to-one with parallel)

  • url: Request URL address

  • model: Name of the model used

  • api: API service used, default is openai

  • dataset: Dataset name, here it’s random, indicating randomly generated dataset, for specific usage instructions refer to

  • tokenizer-path: Model’s tokenizer path, used to calculate the number of tokens (necessary for random datasets)

  • extra-args: Additional parameters in the request, passed as a JSON format string, e.g., {"ignore_eos": true} indicates ignoring the end token

Output Results#

The output test report summary is shown in the image below, including basic information, metrics for each concurrency, and performance test suggestions:

multi_perf

Additionally, the test results for each concurrency level are output separately, including metrics such as the number of requests, successful requests, failed requests, average latency, and average latency per token for each concurrency level.

Benchmarking summary:
+-----------------------------------+------------+
| Key                               |      Value |
+===================================+============+
| Time taken for tests (s)          |    62.9998 |
+-----------------------------------+------------+
| Number of concurrency             |   200      |
+-----------------------------------+------------+
| Total requests                    |   400      |
+-----------------------------------+------------+
| Succeed requests                  |   400      |
+-----------------------------------+------------+
| Failed requests                   |     0      |
+-----------------------------------+------------+
| Output token throughput (tok/s)   |  6501.61   |
+-----------------------------------+------------+
| Total token throughput (tok/s)    | 13379.1    |
+-----------------------------------+------------+
| Request throughput (req/s)        |     6.3492 |
+-----------------------------------+------------+
| Average latency (s)               |    30.9964 |
+-----------------------------------+------------+
| Average time to first token (s)   |     1.3071 |
+-----------------------------------+------------+
| Average time per output token (s) |     0.029  |
+-----------------------------------+------------+
| Average input tokens per request  |  1083.2    |
+-----------------------------------+------------+
| Average output tokens per request |  1024      |
+-----------------------------------+------------+
| Average package latency (s)       |     0.029  |
+-----------------------------------+------------+
| Average package per request       |  1023.43   |
+-----------------------------------+------------+
2025-05-16 11:36:33,122 - evalscope - INFO - 
Percentile results:
+-------------+----------+---------+----------+-------------+--------------+---------------+----------------+---------------+
| Percentiles | TTFT (s) | ITL (s) | TPOT (s) | Latency (s) | Input tokens | Output tokens | Output (tok/s) | Total (tok/s) |
+-------------+----------+---------+----------+-------------+--------------+---------------+----------------+---------------+
|     10%     |  0.3371  |   0.0   |  0.0275  |   28.8971   |     1029     |     1024      |    30.5721     |    62.9394    |
|     25%     |  0.4225  | 0.0218  |  0.0281  |   29.7338   |     1061     |     1024      |    32.1195     |    65.5693    |
|     50%     |  0.9366  | 0.0263  |  0.0291  |   30.8739   |     1073     |     1024      |    33.1733     |    67.9478    |
|     66%     |  1.5892  | 0.0293  |  0.0296  |   31.5315   |     1080     |     1024      |    33.9593     |    69.8569    |
|     75%     |  2.0769  | 0.0308  |  0.0298  |   31.8956   |     1084     |     1024      |    34.4398     |    70.9794    |
|     80%     |  2.3656  | 0.0319  |  0.0299  |   32.3317   |     1088     |     1024      |    34.7858     |    71.7338    |
|     90%     |  3.1024  |  0.039  |  0.0304  |   33.4968   |     1197     |     1024      |    35.4505     |    73.0745    |
|     95%     |  3.5413  | 0.0572  |  0.0308  |   34.1158   |     1251     |     1024      |    35.8045     |    74.3043    |
|     98%     |  3.8131  | 0.1462  |  0.0309  |   34.5008   |     1292     |     1024      |    36.0191     |    77.1365    |
|     99%     |  3.8955  | 0.1761  |  0.031   |   34.5951   |     1343     |     1024      |    36.1281     |    79.4895    |
+-------------+----------+---------+----------+-------------+--------------+---------------+----------------+---------------+

Metric Descriptions#

Metrics

Metric

Explanation

Formula

Time taken for tests

Total time from the start to the end of the test process

Last request end time - First request start time

Number of concurrency

Number of clients sending requests simultaneously

Preset value

Total requests

Total number of requests sent during the testing process

Successful requests + Failed requests

Succeed requests

Number of requests completed successfully and returning expected results

Direct count

Failed requests

Number of requests that failed to complete successfully

Direct count

Output token throughput (tok/s)

Average number of tokens processed per second

Total output tokens / Time taken for tests

Total token throughput (tok/s)

Average number of tokens processed per second

Total tokens / Time taken for tests

Request throughput (req/s)

Average number of successful queries processed per second

Successful requests / Time taken for tests

Total latency

Sum of latency times for all successful requests

Sum of all successful request latencies

Average latency

Average time from sending a request to receiving a complete response

Total latency / Successful requests

Average time to first token

Average time from sending a request to receiving the first response token

Total first chunk latency / Successful requests

Average time per output token

Average time required to generate each output token (exclude first token)

Total time per output token / Successful requests

Average input tokens per request

Average number of input tokens per request

Total input tokens / Successful requests

Average output tokens per request

Average number of output tokens per request

Total output tokens / Successful requests

Average package latency

Average delay time for receiving each data package

Total package time / Total packages

Average package per request

Average number of data packages received per request

Total packages / Successful requests

Percentile Metrics

Metric

Explanation

Time to First Token

The time from sending a request to generating the first token (in seconds), assessing the initial packet delay.

Inter-token Latency

The time interval between generating each output token (in seconds), assessing the smoothness of output.

Time per Output Token

The time required to generate each output token (excluding the first token, in seconds), assessing decoding speed.

Latency

The time from sending a request to receiving a complete response (in seconds): Time to First Token + Time per Output Token * Output tokens.

Input Tokens

The number of tokens input in the request.

Output Tokens

The number of tokens generated in the response.

Output Throughput

The number of tokens output per second: Output tokens / Latency.

Total Throughput

The number of tokens processed per second: (Input tokens + Output tokens) / Latency.

Visualizing Test Results#

Visualizing with WandB#

First, install wandb and obtain the corresponding API Key:

pip install wandb

To upload the test results to the wandb server and visualize them, add the following parameters when launching the evaluation:

# ...
--wandb-api-key 'wandb_api_key'
--name 'name_of_wandb_log'

For example:

wandb sample

Visualizing Test Results with SwanLab#

First, install SwanLab and obtain the corresponding API Key:

pip install swanlab

To upload the test results to the swanlab server and visualize them, add the following parameters when launching the evaluation:

# ...
--swanlab-api-key 'swanlab_api_key'
--name 'name_of_swanlab_log'

For example:

swanlab sample

If you prefer to use SwanLab in local dashboard mode, install swanlab dashboard first:

pip install 'swanlab[dashboard]'

and set the following parameters instead:

--swanlab-api-key local

Then, use swanlab watch <log_path> to launch the local visualization dashboard.