Examples#
Using Local Model Inference#
This project supports inference using local transformers and vllm (vllm needs to be installed first). The --model
can be filled with a modelscope model name, such as Qwen/Qwen2.5-0.5B-Instruct
; or you can directly specify the model weight path, such as /path/to/model_weights
, without needing to specify the --url
parameter.
Inference using transformers
evalscope perf \
--model 'Qwen/Qwen2.5-0.5B-Instruct' \
--attn-implementation flash_attention_2 \ # Optional, or choose from [flash_attention_2|eager|sdpa]
--number 20 \
--rate 2 \
--api local \
--dataset openqa
Inference using vllm
evalscope perf \
--model 'Qwen/Qwen2.5-0.5B-Instruct' \
--number 20 \
--rate 2 \
--api local_vllm \
--dataset openqa
Using prompt
#
evalscope perf \
--url 'http://127.0.0.1:8000/v1/chat/completions' \
--rate 2 \
--model 'qwen2.5' \
--log-every-n-query 10 \
--number 20 \
--api openai \
--temperature 0.9 \
--max-tokens 1024 \
--prompt 'Write a science fiction story, please begin your performance'
You can also use a local file as a prompt:
evalscope perf \
--url 'http://127.0.0.1:8000/v1/chat/completions' \
--rate 2 \
--model 'qwen2.5' \
--log-every-n-query 10 \
--number 20 \
--api openai \
--temperature 0.9 \
--max-tokens 1024 \
--prompt @prompt.txt
Complex Requests#
Using stop
, stream
, temperature
, etc.:
evalscope perf \
--url 'http://127.0.0.1:8000/v1/chat/completions' \
--rate 2 \
--model 'qwen2.5' \
--log-every-n-query 10 \
--read-timeout 120 \
--connect-timeout 120 \
--number 20 \
--max-prompt-length 128000 \
--min-prompt-length 128 \
--api openai \
--temperature 0.7 \
--max-tokens 1024 \
--stop '<|im_end|>' \
--dataset openqa \
--stream
Using query-template
#
You can set request parameters in the query-template
:
evalscope perf \
--url 'http://127.0.0.1:8000/v1/chat/completions' \
--rate 2 \
--model 'qwen2.5' \
--log-every-n-query 10 \
--read-timeout 120 \
--connect-timeout 120 \
--number 20 \
--max-prompt-length 128000 \
--min-prompt-length 128 \
--api openai \
--query-template '{"model": "%m", "messages": [{"role": "user","content": "%p"}], "stream": true, "skip_special_tokens": false, "stop": ["<|im_end|>"], "temperature": 0.7, "max_tokens": 1024}' \
--dataset openqa
Where %m
and %p
will be replaced by the model name and the prompt.
You can set request parameters in the query-template:
{
"model":"%m",
"messages":[
{
"role":"user",
"content":"%p"
}
],
"stream":true,
"skip_special_tokens":false,
"stop":[
"<|im_end|>"
],
"temperature":0.7,
"max_tokens":1024
}
evalscope perf \
--url 'http://127.0.0.1:8000/v1/chat/completions' \
--rate 2 \
--model 'qwen2.5' \
--log-every-n-query 10 \
--read-timeout 120 \
--connect-timeout 120 \
--number 20 \
--max-prompt-length 128000 \
--min-prompt-length 128 \
--api openai \
--query-template @template.json \
--dataset openqa
Using wandb to Record Test Results#
Please install wandb:
pip install wandb
When starting, add the following parameters:
--wandb-api-key 'wandb_api_key'
--name 'name_of_wandb_log'
Debugging Requests#
Use the --debug
option to output the requests and responses.
Non-stream
Mode Output Example
2024-11-27 11:25:34,161 - evalscope - http_client.py - on_request_start - 116 - DEBUG - Starting request: <TraceRequestStartParams(method='POST', url=URL('http://127.0.0.1:8000/v1/completions'), headers=<CIMultiDict('Content-Type': 'application/json', 'user-agent': 'modelscope_bench', 'Authorization': 'Bearer EMPTY')>)>
2024-11-27 11:25:34,163 - evalscope - http_client.py - on_request_chunk_sent - 128 - DEBUG - Request sent: <method='POST', url=URL('http://127.0.0.1:8000/v1/completions'), truncated_chunk='{"prompt": "hello", "model": "qwen2.5"}'>
2024-11-27 11:25:38,172 - evalscope - http_client.py - on_response_chunk_received - 140 - DEBUG - Request received: <method='POST', url=URL('http://127.0.0.1:8000/v1/completions'), truncated_chunk='{"id":"cmpl-a4565eb4fc6b4a5697f38c0adaf9b70b","object":"text_completion","created":1732677934,"model":"qwen2.5","choices":[{"index":0,"text":",everyone!今天我给您撒个谎哦。 ))\\n\\n今天开心的事。","logprobs":null,"finish_reason":"length","stop_reason":null,"prompt_logprobs":null}],"usage":{"prompt_tokens":1,"total_tokens":17,"completion_tokens":16}}'>
stream
Mode Output Example
2024-11-27 20:02:24,760 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":"重要的"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:24,803 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":""},"finish_reason":null}],"usage":null}
2024-11-27 20:02:24,847 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":",以便"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:24,890 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":"及时"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:24,933 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":"得到"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:24,976 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":"帮助"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:25,023 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":"和支持"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:25,066 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":""},"finish_reason":null}],"usage":null}
2024-11-27 20:02:25,109 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":""},"finish_reason":null}],"usage":null}
2024-11-27 20:02:25,111 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{"content":"。<|im_end|>"},"finish_reason":null}],"usage":null}
2024-11-27 20:02:25,113 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: {"model":"Qwen2.5-0.5B-Instruct","object":"chat.completion.chunk","choices":[{"index":0,"delta":{},"finish_reason":"stop"}],"usage":{"prompt_tokens":50,"completion_tokens":260,"total_tokens":310}}
2024-11-27 20:02:25,113 - evalscope - http_client.py - _handle_stream - 57 - DEBUG - Response recevied: data: [DONE]